
Schafer

The book you need to succeed!

Master the essential building blocks
of the Web
The first step to any Web document is to build a strong
foundation. This comprehensive book focuses on the
essential building blocks of the Web: HyperText Markup
Language (HTML), extensible HTML (XHTML),
and Cascading Style Sheets (CSS). You’ll learn basic
scripting and coding standards; how to use tags, tables,
forms, and links; the best ways to test and validate
pages; and many more techniques that help you take
full advantage of these essential tools.

Companion
Web Site

• Explore the basics of HTML such as tags, attributes, and how to
structure content to create specialized document formatting

• Learn how multimedia and scripting can be used to make your
content dynamic

• Author, validate, and troubleshoot your coding and documents

• Enable content for multiple devices—from the standard PC browser
to various mobile devices

• Understand values, lists, colors, fonts, and other CSS metrics and
formatting basics

• Get up to speed on advanced document formatting

Companion
Web Site
Code samples and examples from
the book, as well as extra material,
can be found at www.wiley.com/go/
htmlbible5e.

Steven M. Schafer
has broad experience in technology
and is a veteran of publishing. He’s
been in and around technology as a
programmer, an editor, a product
specialist, a technical manager, and
a Web developer. Steve employs
both open-source and proprietary
technologies and has worked with
the Internet since the mid-1990s.
He can be reached by e-mail at
sschafer@synergy-tech.com.

Master HTML 4.01,
CSS 2.1, and XHTML 1.1

Construct static and
dynamic Web pages

Build for a mobile and
social networking world

H
T

M
L

, X
H

T
M

L
, an

d
 C

S
S

Shelving Category:
COMPUTERS / Programming
Languages / HTML, SGML

Reader Level:
Beginning to Advanced

$39.99 USA
$47.99 Canada

www.wiley.com/go/ htmlbible5e

Steven M. Schafer

Fifth Edition

Fifth Edition

HTML,
XHTML, and
CSS

Companion Web Site

HTML, XHTML,
and CSS Bible

Fifth Edition

HTML, XHTML,
AND CSS BIBLE

Fifth Edition

Steven M. Schafer

Wiley Publishing, Inc.

HTML, XHTML, and CSS Bible, Fifth Edition

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-52396-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher,
or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation.
This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other
professional services. If professional assistance is required, the services of a competent professional person should be
sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organi-
zation or Web site is referred to in this work as a citation and/or a potential source of further information does not
mean that the author or the publisher endorses the information the organization or Web site may provide or rec-
ommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2009940878

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or
vendor mentioned in this book.

For my good friend RD, for being just that.

Also for Mother, whose faith in her son never wavered.
We all love and miss you.

About the Author
Steven M. Schafer is a broad technologist and a veteran of publishing. He’s been in and
around technology as a programmer, an editor, a product specialist, a technical manager,
and a Web developer. Steve employs both open-source and proprietary technologies
and has worked with the Internet since the mid-1990s. He can be reached by e-mail at
sschafer@synergy-tech.com.

Credits
Executive Editor

Carol Long

Senior Project Editor

Adaobi Obi Tulton

Technical Editor

Shawn Kessel

Production Editor

Rebecca Anderson

Copy Editor

Luann Rouff

Editorial Director

Robyn B. Siesky

Editorial Manager

Mary Beth Wakefield

Marketing Manager

Ashley Zurcher

Production Manager

Tim Tate

Vice President and Executive Group
Publisher

Richard Swadley

Vice President and Executive Publisher

Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Lynsey Stanford

Proofreaders

Scott Klemp and Sheilah Ledwidge, Word One

Indexer

Robert Swanson

Cover Image

Joyce Haughey

Cover Designer

Michael E. Trent

Abook like this requires a lot of hard work from a lot of talented people. This talent and
hard work deserves recognition and thanks. As such, the author would like to thank the
following:

The management team at Wiley Publishing for continuing to support large, tutorial reference
books so folks like you (the reader) can benefit.

Jenny Watson, acquisitions editor, for getting the ball rolling on this edition.

Carol A. Long, executive acquisitions editor, for picking up the rolling ball, keeping the project
on track, and keeping this author both responsible and happy.

Adaobi Obi Tulton, senior project editor and the best developer I’ve had the pleasure to work
with. Adaobi simultaneously kept everything on track and provided crucial insights and feedback
throughout the process — all while treating everyone else as valuable team members.

Shawn Kessel, technical editor, for ensuring that the information provided is accurate as well as
pertinent, and for providing many useful insights.

Rebecca Anderson, production editor, for making sure each element was ushered through the
editing process, maintaining the high quality of writing found within.

Luann Rouff, copy editor, who proved to be another in the ‘‘best of’’ class. Luann helped make
my gibberish legible, ironed out the organizational rough spots, and otherwise finely crafted
the text.

Wiley’s production department, for ensuring that the text was consistent, well organized, and
legible, and made it through the production process intact.

John Daily, friend and markup guru, whose hard work is still paying dividends today.

Introduction ..xxxix

Part I: Creating Content with HTML . 1
Chapter 1: What Is a Markup Language? ...3
Chapter 2: HTML Values and Units ...9
Chapter 3: What Goes into a Web Document? ...17
Chapter 4: The HEAD Elements ...41
Chapter 5: Text Structuring Essentials ...49
Chapter 6: Character Formatting Essentials ...61
Chapter 7: Lists ...71
Chapter 8: Links ..87
Chapter 9: Tables ..101
Chapter 10: Frames ...143
Chapter 11: Forms ..159
Chapter 12: Colors and Images ..185
Chapter 13: Multimedia ..213
Chapter 14: Special Characters ...231
Chapter 15: Internationalization and Localization ...247
Chapter 16: Scripts ... 261
Chapter 17: Dynamic HTML ..271
Chapter 18: The Future of HTML: HTML5 ...297

Part II: HTML Tools and Variants . 307
Chapter 19: Web Development Software ...309
Chapter 20: Publishing Your Site ...321
Chapter 21: An Introduction To XML ...329
Chapter 22: Creating Mobile Documents ...349
Chapter 23: Tidying and Validating Your Documents ..359
Chapter 24: HTML Tips and Tricks ...371

Part III: Controlling Presentation with CSS 395
Chapter 25: CSS Basics ...397
Chapter 26: Style Definitions ..405
Chapter 27: CSS Values and Units ...421
Chapter 28: CSS Inheritance and Cascade ...431
Chapter 29: Font Properties ...437
Chapter 30: Text Formatting ..445
Chapter 31: CSS Lists ...471
Chapter 32: Padding, Margins, and Borders ..479

xiii

Contents at a Glance

Chapter 33: Colors and Backgrounds ..491
Chapter 34: CSS Layouts ..503
Chapter 35: Pseudo-Elements and Generated Content ...525
Chapter 36: Dynamic HTML with CSS ..539
Chapter 37: Media Styles and Defining Documents for Printing ..553
Chapter 38: The Future of CSS: CSS3 ...571

Part IV: Additional CSS Tools . 579
Chapter 39: User Interface Styles ...581
Chapter 40: Testing and Validating CSS ..589
Chapter 41: CSS Tips and Tricks ...595

Appendix A: XHTML Element Quick Reference ..617
Appendix B: HTML Special Characters Quick Reference ..667
Appendix C: CSS 2.1 Properties Quick Reference ...679
Appendix D: CSS 2.1 Selectors Quick Reference ..705
Appendix E: Pseudo-Elements and Pseudo-Classes Quick Reference ...709

Index . 711

xiv

Introduction . xxxix

Part I: Creating Content with HTML 1

Chapter 1: What Is a Markup Language? . 3
What Are We Doing Here? ...3
Understanding Hypertext ..4
Understanding Markup Instructions ...4
Understanding Markup Language ...6
Summary ..8

Chapter 2: HTML Values and Units . 9
Basic Tag Attribute Format ...9
Common Attributes ...12

Tag identifiers — IDs and classes ..12
IDs ...12
Classes ...12

Text and Comments ..13
Comments ... 13
CDATA sections ..14

Uniform Resource Indicators ..14
Language and International Options ..15

Language code ...15
Text direction ..15

Summary ..16

Chapter 3: What Goes into a Web Document? 17
Specifying Document Type ...17
Overall Document Structure: HTML, Head, and Body ..18

The <html> tag ..18
The <head> tag ... 18
The <body> tag ...19

Style Definitions ..20
Block Elements: Markup for Paragraphs and Other Blocks of Content21

Formatted paragraphs ...21
Headings ..22
Quoted text ... 24
List elements ..24

xv

Contents

Preformatted text ...26
Divisions ..27

Inline Elements: Markup for Characters ..28
Basic inline tags ...29
Spanning text ...31

Special Characters (Entities) ...31
Organizational Elements ...32

Tables ...32
Forms ...34

Linking to Other Pages ...35
Images ..37
Comments ..38
Scripts ..38
Putting It All Together ..39
Summary ..40

Chapter 4: The HEAD Elements . 41
Specifying the Document Title ...41
Providing Information to Search Engines ...41
Setting the Default Path ..43
Script Sections ...45
Style Sections ...45
Specifying Profiles ...45
Background Color and Background Images ...46

Specifying the document background color ..46
Specifying the document background image ...47

Summary ..48

Chapter 5: Text Structuring Essentials . 49
Formatting Paragraphs ..49
Line Breaks ..51
Divisions ..52
Rules ..56
Block Quotes ...57
Preformatted Text ..58
Summary ..59

Chapter 6: Character Formatting Essentials . 61
Methods of Text Control ...61

The tag ...61
Emphasis and other text tags ..62
CSS text control ..62

Bold and Italic Text ...65
Use of Emphasis Instead of Italics ..66
Monospace (Typewriter) Fonts ...66
Superscripts and Subscripts ..67
Abbreviations ...67

xvi

Contents

Marking Editorial Insertions and Deletions ..68
Grouping Inline Elements with the Span Tag ..68
Summary ..70

Chapter 7: Lists . 71
Understanding Lists ...71
Ordered (Numbered) Lists ..72
Unordered (Bulleted) Lists ..77
Definition Lists ..81
Nested Lists ...83
Summary ..85

Chapter 8: Links . 87
What’s in a Link? ..87
Linking to a Web Page ..89
Absolute versus Relative Links ..90
Link Targets ...92
Link Titles ..93
Keyboard Shortcuts and Tab Order ...94

Keyboard shortcuts ... 94
Tab order ...95

Creating an Anchor ...96
Choosing Link Colors ...96
Link Destination Details ..98
The Link Tag ...99
Summary ..100

Chapter 9: Tables . 101
Parts of an HTML Table ..101
Table Width and Alignment ...103
Cell Spacing and Padding ...107
Borders and Rules ...108

Table borders ...108
Table rules ...110

Rows ..111
Cells ...112
Table Captions ...114
Row Groups — Header, Body, and Footer ..117
Background Colors ..119
Spanning Columns and Rows ...120
Grouping Columns ..125
Formatting with Tables ...127

Rudimentary Formatting with Tables ...127
Real-world examples ...131

Floating page ...132
Odd graphics and text combinations ...134

xvii

Contents

Navigational menus and blocks ..139
Multiple columns ..141

Summary ..142

Chapter 10: Frames . 143
Frames Overview ...143
Framesets and Frame Documents ...144

Creating a frameset ...144
The frameset tag ..146
The frame tag ..148

Frame margins, borders, and scroll bars ..148
Permitting or prohibiting user modifications ...150

Targeting Links to Frames ..151
Nested Framesets ...154
Inline Frames ...155
Summary ..158

Chapter 11: Forms . 159
Understanding Forms ..159
Inserting a Form ..162

HTTP GET ...163
HTTP POST ...163
Additional <form> attributes ..163

Field Labels ..164
Text Input Boxes ...164
Password Input Boxes ...165
Radio Buttons ..165
Check Boxes ..166
List Boxes ...167
Large Text Input ..169
Hidden Fields ..170
Buttons ...171
Images ..172
File Fields ..172
Submit and Reset Buttons ...174
Tab Order and Keyboard Shortcuts ...174
Preventing Changes ...175
Fieldsets and Legends ...177
Using Events with Forms ..179
Form Scripts and Script Services ..182

Download a handler ..183
Use a script service ...183

Summary ..183

Chapter 12: Colors and Images . 185
Web Color Basics ..185
Other Means to Specify Colors ...186

xviii

Contents

The Evolution of Color on the Web ..187
Using Proper Means to Specify Colors ...191
Image Formats for the Web ..193

Image compression ..193
Compression options ..194
GIF ...194
JPEG ...195
PNG ...195

Creating Graphics ..196
Essential functions ...196
Progressive JPEGs and interlaced GIFs ..197
Using transparency ..198
Animated images ...199

Inserting an Image ...200
Image Alignment ...201
Specifying Text to Display for Nongraphical Browsers ...204
Sizing an Image ...205
Image Borders ..206
Image Maps ...208

Specifying an image map ..208
Specifying clickable regions ..209

Specifying regions using anchor tags ...211
Specifying regions using area tags ..211

Putting it all together ..211
Summary ..212

Chapter 13: Multimedia . 213
Animated Images ...214
Animation and Video Formats, Plug-ins, and Players ...216

Popular formats and players (plug-ins) ..217
Flash ..218
RealOne ...218
QuickTime ...218
YouTube ..218

Windows Media Player ...218
Embedding Media via the Object Tag ..219
Embedding a Windows Media Player Using <object> ...223
Embedding YouTube Videos .. 226
Adding Sound to Web Pages ..228
Creating Multimedia Files ...229
A Final Word About Multimedia ..229
Summary ..230

Chapter 14: Special Characters . 231
Understanding Character Encodings ..231
Special Characters ...232

xix

Contents

En and Em Spaces and Dashes ...233
Copyright and Trademark Symbols ..234
Currency Symbols ...235
‘‘Real’’ Quotation Marks ..235
Arrows ...236
Accented Characters ..237
Greek and Mathematical Characters ...239
Other Useful Entities ...243
Summary ..245

Chapter 15: Internationalization and Localization 247
Internationalization and Localization ..247
Translating Your Web Site ..249
Understanding Unicode ..249

Basic Latin (U + 0000–U + 007F) ...249
ISO-8859-1 ..254
Latin-1 Supplement (U + 00 C0 - U + 00FF) ...254
Latin Extended-A (U + 0100 - U + 017F) ...259
Latin Extended-B and Latin Extended Additional ...260

Summary ..260

Chapter 16: Scripts . 261
Client-Side versus Server-Side Scripting .. 261

Client-side scripting ..261
Server-side scripting ..262

Setting the Default Scripting Language ..262
Including a Script ..263
Calling an External Script ...264
Triggering Scripts with Events ..264
Hiding Scripts from Older Browsers ..269
Summary ..270

Chapter 17: Dynamic HTML . 271
The Need for DHTML ...271
How DHTML Works ...272
The Document Object Model ...272

The history of the DOM ...273
Understanding the DOM ..273
DOM node properties and methods ...275
Traversing and changing a document’s nodes ...278

The JavaScript DOM ...280
The window object ...281
The document object ..283
The form object ...284
The location object ..284
The history object ...285
The self object ...285

xx

Contents

Using Event Handlers ...286
Accessing an Element by Its ID ..287
Cross-Browser Compatibility Issues ...288

Browser detection: querying for identification ...288
Browser detection: object detection ..289

DHTML Examples ...289
Form Automation: Check boxes ...289

Rollovers ..291
Collapsible menus ...292

How they work ...293
Summary ..295

Chapter 18: The Future of HTML: HTML5 . 297
More Publishing and Layout Features ..297
Accessible Multimedia ...298
Changes: Elements and Attributes ..300

New elements ..301
New attributes by element ..301
New input types (form input element) ..302
New global attributes ..303
Deprecated elements ...303
Deprecated attributes ..304

Summary ..305

Part II: HTML Tools and Variants 307

Chapter 19: Web Development Software . 309
Text-Oriented Editors ...309

Simple text editors ..309
Smart text editors ..310
HTML-specific editors ...311

WYSIWYG HTML Editors ...312
NetObjects Fusion ...312
Dreamweaver ...314
Firefox Add-ons ...316

Other Tools ...317
Graphics editors ..317
Adobe Flash ...318

Summary ..319

Chapter 20: Publishing Your Site . 321
Introducing FTP ..321
FTP Clients ..322
Notable FTP Clients ..325
Principles of Web Server File Organization ...326
Summary ..327

xxi

Contents

Chapter 21: An Introduction To XML . 329
XML Basics ..329
XML Syntax ...331

XML Declaration and DOCTYPE ..331
Elements ..332
Attributes ...333
Comments ...334
Non-parsed data ..334
Entities ...335
Namespaces ...336
Stylesheets ...337

Working with Document Type Definitions ..337
Using elements in DTDs ...338

Using element declaration syntax for empty elements339
Using element declaration syntax for elements with PCDATA339
Using element declaration syntax for elements with child elements339
Declaring the number of occurrences for elements339

Using attributes in DTDs ..341
Using entities in DTDs ..342
Using PCDATA and CDATA in DTDs ...342

Introducing XML Schemas ..343
Working with Schemas ...343
Using XML ...345

Extensible Stylesheet Language Transformations ...346
XML editing ...346
XML parsing ..347

Summary ..347

Chapter 22: Creating Mobile Documents . 349
Understanding the Evolution of the Mobile Web ..350

The first, dark years of mobility ...350
The Open Mobile Alliance and other standards ..351
The bottom line ...351

XHTML Basic 1.1 ..352
The XHTML Basic 1.1 doctype ..352
XHTML Basic 1.1 elements ...352
Special considerations ...353

Screen size ...354
Balancing content for bandwidth and cost ..354
Input restrictions ...354
Easy URLs ..355
Small images ..356
Descriptive alt attributes and link text ...356

xxii

Contents

Reliable navigation schemes ...356
Limit complex display structures ...356

Mobile Web Development Tools ..356
Summary ..357

Chapter 23: Tidying and Validating Your Documents 359
Tidying Your HTML Code ..359

HTML Tidy ..362
Getting HTML Tidy ...362
Running HTML Tidy ...363

Validating Your Code ..365
Specifying the correct document type declaration ...365
Validation tools ...366
Understanding validation output ..367

Additional Testing and Validation ..368
Testing with a variety of user agents ..368
Testing for a variety of displays ..368

Summary ..369

Chapter 24: HTML Tips and Tricks . 371
Preloading Images ... 371
Controlling Text Breaks in Table Cells ..373
Stretching Title Bars ..374
Simulating Newspaper Columns .. 377
Including Image Size for Fast Display ..379
Protecting E-mail Addresses ..379
Automating Forms ...382

Manipulating form objects ..382
Validating form input ..384

Modifying the User Agent Environment .. 387
The concept ...387
The implementation ..387
The JavaScript functions ...392

Summary ..393

Part III: Controlling Presentation with CSS 395

Chapter 25: CSS Basics . 397
The Purpose of Styles ..397
Styles and HTML ...398
CSS Levels 1, 2, and 3 ..400
Defining Styles ...400
Cascading Styles ..402
Summary ..404

xxiii

Contents

Chapter 26: Style Definitions . 405
The Style Definition Format ...405
Understanding Selectors ..407

Matching elements by type ...407
Matching using the universal selector ..407
Matching elements by class ..408
Matching elements by identifier ...409
Matching elements by specific attributes ...409
Matching child, descendant, and adjacent sibling elements 410

Understanding document hierarchy ...410
Selecting by hierarchy ...411

Understanding Style Inheritance ...412
Using Pseudo-Classes ..413

Anchor styles ...413
The :first-child pseudo-class ...414
The :lang pseudo-class ..414

Pseudo-Elements ...415
First line ..415
First letter ..416
Before and after ...417

Shorthand Expressions ..418
Summary ..420

Chapter 27: CSS Values and Units . 421
General Property Value Rules ...421
Property Value Metrics ..423

Keyword values ...424
Real-world measures ...425
Screen measures ..426
Relational measures ...426
Color and URL functions ..428
Aural metrics ...429

Summary ..430

Chapter 28: CSS Inheritance and Cascade . 431
Inheritance ...431
Cascade ..433
Specificity ...435
Summary ..436

Chapter 29: Font Properties . 437
Understanding Fonts ...437
Font Types ...438
Font Sizing ..440
Font Styling ...441

xxiv

Contents

Line Spacing ..442
Embedding Fonts in a Document .. 442
Summary ..444

Chapter 30: Text Formatting . 445
Aligning Text ...445

Controlling horizontal alignment ...445
Controlling vertical alignment ..448

Indenting Text ...450
Controlling White Space Within Text ..451

Clearing floating objects ... 451
The white-space property ...454

Controlling Letter and Word Spacing ..455
Specifying Capitalization ...457
Using Text Decorations ...458
Autogenerated Text ...460
Using CSS Table Properties ..460
Controlling Table Attributes ...460

Table borders ...461
Table border spacing ...462
Collapsing borders ..464
Borders on empty cells ...465

Table Layout ..467
Aligning and Positioning Captions ...468
Summary ..470

Chapter 31: CSS Lists . 471
An Overview of Lists ...471
CSS Lists — Any Element Will Do ..472
List Style Type ...473
Positioning of Markers ..475
Using Images as List Markers ...476
Summary ..478

Chapter 32: Padding, Margins, and Borders . 479
The CSS Box Formatting Model ...479
Element Padding ... 482
Element Borders ..483

Border width ...483
Border style ... 484
Border color ...485
Border property shortcuts ...486
Border spacing ...487

Element Margins ..487
Dynamic Outlines ..489
Summary ..490

xxv

Contents

Chapter 33: Colors and Backgrounds . 491
Element Colors ..491

Foreground colors ...491
Background colors ...492

Background Images ...496
Repeating and scrolling images ..498
Positioning background images ..501
The background shortcut property ..502

Summary ..502

Chapter 34: CSS Layouts . 503
Understanding CSS Positioning ..503

Static positioning ...503
Relative positioning ...504
Absolute positioning ...506
Fixed positioning ...507

Specifying the Element Position ...508
Floating Elements to the Left or Right ...511
Defining an Element’s Width and Height ..514

Specifying exact sizes ..514
Specifying maximum and minimum sizes ...515
Controlling element overflow ...515

Stacking Elements in Layers ...517
Controlling Element Visibility ..522
Summary ..523

Chapter 35: Pseudo-Elements and Generated Content 525
The Content Property ...525
Pseudo-Elements ...527

:first-line ..528
:first-letter ..528
:before and :after ...530

Quotation Marks ... 531
Numbering Elements Automatically ...532

The counter object ..532
Changing the counter value ..532
A counter example: chapter and section numbers ..533
Custom list numbers ...536

Summary ..536

Chapter 36: Dynamic HTML with CSS . 539
Accessing CSS Properties with JavaScript ..539
Useful CSS Manipulation ..545

Hiding and showing text ..545
Picture zooming ..548
Menu buttons with rollovers ..549

Summary ..552

xxvi

Contents

Chapter 37: Media Styles and Defining Documents for Printing 553
Understanding CSS Media Types ...553

Specifying media types ..554
Specifying one style’s media type ...554
Specifying a group of styles’ media type ..555
Specifying an external style sheet’s media type ...556

Setting Up Documents for Printing ..556
The page box formatting model ...556
Defining the page size with the @page rule ..557

Setting up the page size with the size property ..559
Setting margins with the margin property ...559
Including crop and cross marks ...560

Controlling page breaks ..560
Using the page-break-before and page-break-after properties560
Using the page-break-inside property ..562

Handling widows and orphans ...562
Preparing documents for double-sided printing ..564

Creating a Multimedia Document ..564
The online (screen media) document ...565
Reformatting the page ...568

Summary ..570

Chapter 38: The Future of CSS: CSS3 . 571
Just Better ..571
Modularity ...572
Using CSS3 Properties Today ...573
More Control over Selections ...574
Revisiting the Brass Ring of CSS: Rounded Corners ..575
Summary ..577

Part IV: Additional CSS Tools 579

Chapter 39: User Interface Styles . 581
Changing the Cursor ...581
User Interface Colors ...583
User Interface Fonts ..587
Summary ..587

Chapter 40: Testing and Validating CSS . 589
Testing Syntax As You Create Styles ..589
A Word About Formatting ..591
Validating CSS ...591
Firefox Add-ons for CSS Editing ..592
Summary ..593

xxvii

Contents

Chapter 41: CSS Tips and Tricks . 595
Hanging Indents ..595
Expanding Buttons ..597
Pull Quotes ..600
Tabbed Menus ...603

Rounded Boxes ..605
Flowing Elements ..608
Flowing Text ...611

Summary ..615

Appendix A: XHTML Element Quick Reference 617
Element Listings ..618

<a> ...618
Context ..618
Attributes ...618
Usage example ...619

<abbr> ...619
Context ..619
Attributes ...619
Usage example ...619

<acronym> ...620
Context ..620
Attributes ...620
Usage example ...620

<address> ...620
Context ..620
Attributes ...621
Usage example ...621

<area> ..621
Context ..621
Attributes ...621
Usage example ...621

 ...621
Context ..622
Attributes ...622
Usage example ...622

<base> ..622
Context ..622
Attributes ...622
Usage example ...622

<bdo> ..623
Context ..623

xxviii

Contents

Attributes ...623
Usage example ...623

<big> ..623
Context ..623
Attributes ...623
Usage example ...624

<blockquote> ...624
Context ..624
Attributes ...624
Usage example ...624

<body> ...624
Context ..625
Attributes ...625
Usage example ...625

 ...625
Context ..625
Attributes ...625
Usage example ...626

<button> ..626
Context ..626
Attributes ...626
Usage example ...626

<caption> ...627
Context ..627
Attributes ...627
Usage example ...627

<cite> ...627
Context ..627
Attributes ...627
Usage Example ..627

<code> ...628
Context ..628
Attributes ...628
Usage Example ..628

<col> ..628
Context ..628
Attributes ...628
Usage example ...629

<colgroup> ..629
Context ..629
Attributes ...629
Usage example ...629

xxix

Contents

<dd> ..629
Context ..629
Attributes ...629
Usage example ...630

 ..630
Context ..630
Attributes ...630
Usage example ...630

<dfn> ...630
Context ..630
Attributes ...630
Usage example ...631

<div> ..631
Context ..631
Attributes ...631
Usage example ...631

<dl> ...631
Context ..631
Attributes ...631
Usage example ...632

<dt> ...632
Context ..632
Attributes ...632
Usage example ...632

 ..632
Context ..632
Attributes ...633
Usage example ...633

<fieldset> ...633
Context ..633
Attributes ...633
Usage example ...633

<form> ...633
Context ..634
Attributes ...634
Usage example ...634

<h1>, <h2>, <h3>, <h4>, <h5>, <h6> ..634
Context ..634
Attributes ...635
Usage example ...635

<head> ...635
Context ..635

xxx

Contents

Attributes ...635
Usage example ...635

<hr> ...636
Context ..636
Attributes ...636
Usage example ...636

<html> ...636
Context ..636
Attributes ...636
Usage example ...636

<i> ..637
Context ..637
Attributes ...637
Usage example ...637

 ...637
Context ..637
Attributes ...637
Usage example ...638

<input> ..638
Context ..638
Attributes ...638
Usage example ...639

<ins> ..639
Context ..639
Attributes ...639
Usage example ...639

<kbd> ..640
Context ..640
Attributes ...640
Usage example ...640

<label> ...640
Context ..640
Attributes ...640
Usage example ...640

<legend> ..641
Context ..641
Attributes ...641
Usage example ...641

 ...641
Context ..641
Attributes ...641
Usage example ...642

xxxi

Contents

<link> ..642
Context ..642
Attributes ...642
Usage example ...642

<map> ..643
Context ..643
Attributes ...643
Usage example ...643

<meta> ...643
Context ..643
Attributes ...644
Usage example ...644

<noscript> ..644
Context ..644
Attributes ...644
Usage example ...644

<object> ...645
Context ..645
Attributes ...645
Usage example ...645

 ..646
Context ..646
Attributes ...646
Usage example ...646

<optgroup> ..646
Context ..646
Attributes ...647
Usage example ...647

<option> ..647
Context ..647
Attributes ...647
Usage example ...647

<p> .. 647
Context ..648
Attributes ...648
Usage example ...648

<param> .. 648
Context ..648
Attributes ...648
Usage example ...649

<pre> ...649
Context ..649

xxxii

Contents

Attributes ...649
Usage example ...649

<q> ...649
Context ..649
Attributes ...650
Usage example ...650

<samp> ..650
Context ..650
Attributes ...650
Usage example ...650

<script> ..650
Context ..651
Attributes ...651
Usage example ...651

<select> ..651
Context ..651
Attributes ...652
Usage example ...652

<small> ..652
Context ..653
Attributes ...653
Usage example ...653

 ...653
Context ..653
Attributes ...653
Usage example ...653

 ...653
Context ..654
Attributes ...654
Usage example ...654

<style> ...654
Context ..654
Attributes ...654
Usage example ...654

<sub> ...655
Context ..655
Attributes ...655
Usage example ...655

<sup> ...655
Context ..655
Attributes ...655
Usage example ...655

xxxiii

Contents

<table> ...656
Context ..656
Attributes ...656
Usage example ...656

<tbody> ...657
Context ..657
Attributes ...657
Usage example ...657

<td> ...657
Context ..657
Attributes ...658
Usage example ...658

<textarea> ..658
Context ..658
Attributes ...658
Usage example ...659

<tfoot> ...659
Context ..659
Attributes ...659
Usage example ...659

<th> ...659
Context ..660
Attributes ...660
Usage example ...660

<thead> ..660
Context ..660
Attributes ...661
Usage example ...661

<title> ...661
Context ..661
Attributes ...661
Usage example ...661

<tr> ..661
Context ..662
Attributes ...662
Usage example ...662

<tt> ..662
Context ..662
Attributes ...662
Usage example ...662

 ...662
Context ..663

xxxiv

Contents

Attributes ...663
Usage example ...663

<var> ..663
Context ..663
Attributes ...663
Usage example ...663

Event Attributes ...664
Standard events ...664
Other Events ..664

Other Common Attributes ..665
Core attributes ...665
Internationalization attributes ...665
Common color codes ..665

Appendix B: HTML Special Characters Quick Reference 667

Appendix C: CSS 2.1 Properties Quick Reference 679
Property Listings ..679

Property List: Quick Reference ...680
Background ..682

background-image ...682
background-repeat ..682
background-attachment ..683
background-position ...683
background-color ..683
background ..684

List ...684
list-style-type ...684
list-style-position ...684
list-style-image ...685
list-style ...685

Generated content ...685
content ...685
quotes ..686
counter-increment ...686
counter-reset ..686

Font and text ...686
text-align ..686
text-decoration ..687
text-indent ...687
text-transform ..687
color ...688
font-family ...688
font-size ...688

xxxv

Contents

font-style ..689
font-variant ..689
font-weight ..689
font ..690
letter-spacing ...690
word-spacing ...691
white-space ..691

Text direction ..691
unicode-bidi ..691
direction ..692

Block ..692
margin-left, margin-right, margin-top, margin-bottom692
margin ...692
padding-left, padding-right, padding-top, padding-bottom693
padding ..693
clip ...693
overflow ...694
height, width ...694
max-height, max-width ...694
min-height, min-width ..694
line-height ...695
vertical-align ..695

Positioning ...695
visibility ...696
display ...696
position ..696
float ..697
top, bottom, left, right ..697
z-index ...697
clear ...698

Borders ...698
border-color, border-top-color, border-bottom-color, border-left-color,

border-right-color ...698
border-style, border-top-style, border-bottom-style, border-left-style,

border-right-style ..699
border-width, border-top-width, border-bottom-width, border-left-width,

border-right-width ..699
border ..699
outline-color ..700
outline-style ...700
outline-width ...700
outline ..700

xxxvi

Contents

Table ..701
table-layout ..701
border-collapse ..701
border-spacing ...701
empty-cells ..702
caption-side ...702

Printing ..702
page-break-after, page-break-before ...703
page-break-inside ..703
orphans ..703
widows .. 703

Miscellaneous ..704
cursor ...704

Appendix D: CSS 2.1 Selectors Quick Reference 705
Basic Element Selectors ...705
Descendant Selectors ...706
Child Selectors ...706
Adjacent Sibling Selectors ...707
Class Selectors ...707
ID Selectors ..707
Attribute Selectors ...708

Appendix E: Pseudo-Elements and Pseudo-Classes
Quick Reference . 709

Pseudo-Elements ...710
Pseudo-Classes ...710

Index . 711

xxxvii

Welcome to HTML, XHTML, and CSS Bible, Fifth Edition. This book was conceived,
designed, and written to provide a comprehensive overview of the two largest
Web technologies, HyperText Markup Language (HTML) and Cascading Style

Sheets (CSS).

This book serves as an introduction and reference to the information you need to create
documents — simple and complex — for the World Wide Web.

A Brief History of the Internet
and the World Wide Web
The World Wide Web is omnipresent in our lives today, and most computers and computerized
devices are connected to it. However, the Web and its underlying Internet infrastructure had a
very different childhood that betrays the consumer and commercial base it has today.

The Internet has its roots in the U.S. Department of Defense Advanced Research Project Agency
(ARPA) project begun in or around 1960. Among the project’s goals was the ability to network
computers quickly and across great distances. The network was to be designed to be almost
fail-safe, enabling connected computers to continue communicating even if assorted routes
between them were to fail.

In 1969, the ARPANet was born, connecting several key universities. The network continued
to grow, with more and more universities coming online. One of the goals of the initial
project — robust, nearly fail-safe performance — was realized via the Internet Protocol (IP).
This protocol enabled communication packets to find various routes to a destination in case one
or more of the routes became unstable. This communication protocol became the backbone of
today’s Internet, and is how the Internet got its name.

The Transmission Control Protocol was joined with the IP to provide a robust transmission suite,
a marriage of two protocols to offer more flexibility and the ability to create better communica-
tions applications for the Internet.

In the 1980s, the Internet went through several transitions. Although it was highly populated by
educational institutions, the U.S. military hadn’t forgotten its original project. Other government
agencies also took notice and joined the crowd online; and the military decided to create its own
network, MILNET, lessening the load slightly.

By 1992, the Internet was far and away the most popular network in the world. During this
time, Tim Berners-Lee, a British software engineer and computer scientist, created HyperText
Markup Language to create documents, a protocol — HyperText Transfer Protocol (HTTP) — to

xxxix

Introduction

send such documents, and the first browser editor, called the World Wide Web. The ‘‘Web’’ soon
came to the attention of the National Center for Supercomputing Applications (NCSA), where a
programming team decided to create a better browser. Thus was Mosaic born, the first browser
to support a high degree of multimedia. Mosaic helped usher in the crop of modern browsers we
use today.

As the Web continued to be adopted outside of the government and educational sectors, it
became more consumer-savvy. Many companies began using the Web infrastructure for market-
ing and support purposes, while many Web developers began to target a wider, nontechnical,
audience.

By the early 2000s, the Web was accessible by almost any network-connected computer, many
electronic devices, and some unlikely consumer devices such as automobiles. Each of these con-
nected devices uses the same type of connection, the same languages to define documents, and
the same protocols to send the information.

As more and more nontechnical users began using the Web, web ‘‘pages’’ began to look more
like high-quality printed documents — resembling newspapers, brochures, magazines, and the
like. This movement in content signaled how far the Web had come from its inception — from
technical, text-only pages to full-color, heavily designed documents.

During the entire evolution of the World Wide Web, and especially in the last few years, stan-
dards, tools, and related applications have changed and evolved, sometimes at a very rapid pace.
This gives Internet books a wide realm to cover.

What This Book Covers
What exactly is covered in this book? The easy answer is HTML and CSS, just as the title
suggests; but with four plus notable versions of HTML, three plus notable versions of CSS, and
a bevy of connected technologies, the answer is not so cut and dried.

The more exact answer is as follows:

� HTML 4.01/XHTML 1.1

� CSS 2.1

� JavaScript

� A few supporting applications to create and troubleshoot Web documents

� A few multimedia formats (graphics, video, and so on) and supporting applications

The following sections explain how these diverse sets of applications converge.

HTML 4.01/XHTML 1.1
HTML 4.01 is the latest version of HTML. This version is very stable, having been released in
December 1999. Although HTML version 5 (HTML5) is in draft stage as of this writing, the
specification is probably a good year (or so) away from actual release.

xl

Introduction

Note, however, that this book promotes and uses XHTML 1.1 standards. This includes standards
such as the following:

� Every tag needs to be explicitly closed, whether by a matching closing tag or a slash at the
end of a tag (if it has no matching closing tag).

� Every tag must be in lowercase; in other words, use <p> instead of <P>.

� Every tag attribute needs to be enclosed in quotes.

� Every tag attribute must have a value — for example, the attribute selected should be
selected ="selected" instead.

Although these standards are not a mandatory part of HTML 4.01, they are covered in this book
because the XHTML standards are stricter, don’t hamper HTML, and prepare you for authoring
documents in other XML-based languages.

Note
Future versions of HTML are to be based on XHTML coding standards. �

Cross-Ref
Chapter 18 provides a glimpse inside HTML5. �

CSS 2.1
The latest CSS version is 2.1. Although version 3.0 is in development, its release might still be
years away. Therefore, this book concentrates on CSS 2.1 due to its maturity. CSS version 2.0
has been around for almost a decade, is used for millions of Web pages, and is well understood
by most Web designers. CSS version 2.1 combines some bug fixes, exact specifications where
there was some ambiguity, and a few more properties and values. At its core, however, it is very
much like version 2.0.

Although the CSS version 3.0 specification exists in draft form and has certain features adopted
into certain user agents, it is far from being viable for a wide audience. As such, it is safer to
stick with the existing 2.1 standard.

Cross-Ref
Chapter 38 provides a glimpse inside CSS3. �

User Agent (Browser) Coverage
As mentioned earlier in this introduction, in 1993 Mosaic was the first widely used browser for
effectively browsing the Internet. Over the years many other browsers were developed — the
list is long and varied. For example, the text-only browser Lynx was developed mostly for
Unix/Linux use when graphics were scarce. Other browsers such as Opera were developed to
remain a pure environment, rigidly supporting the current HTML and CSS standards.

xli

Introduction

The two staples of browser-dom, IE and Firefox, continue to dominate today’s market but also
continue to adopt their own standards in various ways that frustrate even the most seasoned
Web developer.

Over the last few years, Mac users have had Safari, a Mac-native browser. Safari hasn’t been
known for its speed or adherence to standards, but it does give Mac users an alternative to
Microsoft Internet Explorer.

In 2009, Google’s Chrome browser was released, adding yet another platform to the mix.
Chrome provides many enticing features, such as a robust security framework and decent
compatibility, although it is still in its infancy despite being the fourth most widely used
browser. As it matures it will no doubt go through its own growing pains, including support of
standard XHMTL and CSS.

So, with all these browser options, which browser(s) are specifically covered in this book?
Specifically, none of the above. Rather than cover the technology of any particular browser(s),
this book concentrates on the current standards of XHTML and CSS. The technologies are
presented in their ratified standard form. Browser support is mentioned where appropriate, but
browser-specific hacks or workarounds are not covered.

Note
Although most of the figures in this book were produced with Microsoft’s Internet Explorer, it is only a
matter of publishing practicality, not favoritism. �

This decision regarding what to include keeps the book content from being too confusing while
trying to cover the various quirks of various browsers, and keeps the book a manageable size.

Web 2.0
In 2004, a new World Wide Web was heralded: ‘‘Web 2.0.’’ This new age of the Web was to
facilitate interactive information sharing, interoperability, user-centered design, and collaboration.

In the next few years several outlets for this new frontier were born. They included blogs,
web-based communities, hosted services, and a bevy of social-networking and collaborative
sites. It seemed as though the new Web was coming into its own. Except, this new Web was
nothing new.

Web 2.0 is built on the same technologies as the original and normal Web: (X)HTML, CSS,
JavaScript, etc. The only difference was that the new application of the technology was much
more focused on social and collaborative features. If one were to follow the evolution of the
web — from academia, through business marketing, through personal use — social uses would
be the next step of the evolution of the Web. This step would be a natural evolution, not the
technical revolution foretold. This book takes the position that Web 2.0, as defined back in
2004, never actually took root. Instead the spirit of the use of technology on the Web reached
a natural point in its evolution, using the same tools and technologies that created the Web.
As such, you will not find any specific Web 2.0 coverage within this book, but will be able to
employ the building blocks that are covered for a wide range of purposes, including social and
collaborative online tools.

xlii

Introduction

Terminology
To stay progressive with the evolution of the Web and its direction today, this book uses less
technical and more progressive terminology.

For example, you will seldom, if ever, see the words ‘‘page’’ or ‘‘Web page’’ used to refer to Web
content in this book. That’s because as the Web has matured as a publishing medium, words
such as ‘‘document’’ are much more apt for describing content on the Web.

Similarly, the word ‘‘browser’’ is a bit passé, and is therefore rarely used. In the past, applications
such as Mosaic, Mozilla, Firefox, Opera, and Internet Explorer were the only game in town when
it came to accessing the Web. Such applications, which were primarily used to ‘‘browse’’ content
on the Web, were aptly dubbed ‘‘browsers.’’

However, the devices and applications used to access Web content today are much broader:

� Personal electronic devices

� Onboard vehicle systems

� Entertainment system controllers

� Mall kiosks

Many of these Web-enabled applications are not like traditional browsers. They may access data
differently, present data differently, and might be controlled differently than a browser. A better
term for these applications is user agent, which basically means ‘‘something that enables a user
to access data,’’ which is what each of these does. For that reason, get used to seeing user agent
instead of browser.

Who Should Read This Book?
This book is geared toward a wide audience. Readers who are just getting started with HTML
and Web content will benefit the most, as this book provides both a solid learning foundation
as well as ample reference material for later perusal. Experienced users will find the chapters
covering new standards and technologies to be the most useful, but also will appreciate having a
comprehensive reference for consultation.

Although the Web is technical in nature, this book boils down the technology into simple and
straightforward terms. Whether you qualify as a computer scientist or as a computer neophyte,
you will be able to understand, adopt, and deploy the information throughout this book.

This Is Not a Web Design Book
This book teaches the basics of HTML elements, how to integrate said elements, and finally how
to layer CSS over the top. Design books generally skimp on the building-block detail, only cov-
ering how to best use the elements to achieve cosmetically pleasing results. While each type of
book does cover principles of the other, the cross-over content is not comprehensive.

xliii

Introduction

Typically, both approaches do not appear in the same book due to size constraints. The other
reason why the two approaches are different has to do with the separation of content and design.
This book concentrates on the content portion of Web design, whereas other design-centric
books cover the design (visible attributes).

Tip
Wiley publishes many Web design books that can be paired with this book to provide a wide
range of skills and techniques for creating technically correct and visually pleasing documents.

Two such recommendations include:

� Creating Web Sites Bible, Third Edition, by Philip Crowder and David A. Crowder (2008).

� Beginning CSS Cascading Style Sheets for Web Design, 2nd Edition, by Richard York (Wrox,
2007).

Visit the Wiley website (www.wiley.com) and search on ‘‘web design’’ to find other books applicable to
your needs. �

What Is Contained in This Book?
This book is divided into four major sections, plus five appendixes.

Part I: Creating Content with HTML
This part of the book covers the basics of HTML — the tags, attributes, and structure that make
up the language. You learn how to structure a document, format text, and incorporate multime-
dia. You also learn basic and advanced scripting to lend a dynamic edge to your documents.

Part II: HTML Tools and Variants
This part of the book covers utilities to help you author, validate, and troubleshoot your docu-
ments. A few useful HTML variants and extensions — including XML and XHTML Basic — are
also covered.

Part III: Controlling Presentation with CSS
This part of the book covers the basics of CSS, the syntax of CSS selectors, valid properties and
values, and how to use CSS properties to effectively format the various portions of your docu-
ment. You will also learn how to format a document for printing using CSS media types.

Part IV: Additional CSS Tools
The last part of this book covers additional CSS topics, including advanced layout, user interface
styles, testing and validating CSS, and some CSS tips and tricks.

xliv

Introduction

Reference Appendixes
The appendixes provide a quick reference to the material covered in detail throughout the rest of
the book.

Tip
See the Table of Contents for a breakdown of chapter topics in each part. �

How to Use This Book
This book can be used in a variety of ways depending upon your skill level and intent.

The sequential read
If you need to learn HTML and CSS from beginning to end, then a sequential read — reading
the chapters in order from beginning to end — is for you. The chapters are designed to intro-
duce topics in a particular order to get you started and build toward more advanced topics.

For a tutorial approach, choose a sequential read.

A targeted or random read
If you need only a refresher of certain material or want to learn in a different order than the
chapters provide, then a targeted or random read — finding a topic in the table of contents or
index to read, or reading chapters in a different order than numbered — is for you. Although the
chapters were written to build on one another, they also are topical and encapsulate individual
subjects. Find a chapter with information you need to learn and read it, or find a section within
a chapter and read it alone.

For a referential approach, choose a targeted or random read.

Conventions and Features
Many different organizational and typographical features are used throughout this book to help
you get the most from the information contained within.

Tips, Notes, and Cross-References
Whenever the author wants to bring something important to your attention, the information
appears in a Tip, Note, or Cross-Reference. These elements are formatted as follows:

Tip
This information is important and is set off in a separate paragraph with a distinct look. �

xlv

Introduction

Tips generally are used to provide information that can make your work easier — special short-
cuts or methods for doing something more easily than the norm.

Notes provide additional, ancillary information that is helpful but somewhat outside the scope of
the material presented.

Cross-references indicate other places in the book you’ll find information pertinent to the topic
at hand.

Code
It is often necessary to display code (HTML tags, JavaScript commands, script listings) within the
text. This book uses two distinct conventions, depending on where the code appears.

Code in text
A special font is used to indicate code within normal text. For example:
<body id="COMPONENT-body-0001" onLoad = ‘‘displaygraphics();">.

Code listings
This code is set apart and indented from regular text, as follows:

Code listings appear in specially formatted listings, in a different
font, similar to these lines.***

Companion Website
A companion website has been created to help support this book. It contains code from the book
and examples within, as well as extra material not contained in this book. The website can be
found at www.wiley.com/go/htmlbible5e.

xlvi

Part I

Creating Content with
HTML

IN THIS PART
Chapter 1
What is a Markup Language?

Chapter 2
HTML Values and Units

Chapter 3
What Goes into a Web
Document?

Chapter 4
The HEAD Elements

Chapter 5
Text Structuring Essentials

Chapter 6
Character Formatting Essentials

Chapter 7
Lists

Chapter 8
Links

Chapter 9
Tables

Chapter 10
Frames

Chapter 11
Forms

Chapter 12
Colors and Images

Chapter 13
Multimedia

Chapter 14
Special Characters

Chapter 15
Internalization and
Localization

Chapter 16
Scripts

Chapter 17
Dynamic HTML

Chapter 18
The Future of HTML: HTML 5

What Is a Markup
Language?

IN THIS CHAPTER
What Are We Doing Here?

Understanding Hypertext

Understanding Markup
Instructions

Understanding Markup
Language

The World Wide Web is a technology beast. If you have read this
book’s introduction, you should have at least a passing familiar-
ity with how the Web started — its humble beginnings to bring

cross-referenced textual documents to the masses via the connectivity of the
Internet.

You are reading this book, so it’s a good assumption that you are familiar
with what the Web has become today — a collection of technologies capable
of transporting numerous media across the Internet for consumption directly
on your desktop.

However, it’s important not to forget the Web’s humble beginnings because
the technologies used for the very first simple documents are still in use
today, and must be understood. This chapter helps frame the reasons why.

What Are We Doing Here?
Why are we diving into technical topics instead of talking about how to cre-
ate Web documents? Well, technically we are talking about how to create
Web documents. The more you know about the technology behind the Web,
the better prepared you will be to use the technology to your benefit, and
the easier it will be to create Web documents.

Note
If you really do want to just dive into creating documents, check out
Chapter 19, ‘‘Web Development Software,’’ which covers tools you can
use to quickly create documents without knowing the underlying technol-
ogy behind it all. However, keep in mind that such tools do not always
accomplish the goal you desire and sometimes their results need manual
tweaking — tweaking that you will learn to perform throughout the other
chapters in this book. �

3

Part I: Creating Content with HTML

So back to the question: What are we doing here?

Answer: Web documents are created using several different technologies. The main technol-
ogy is Hypertext Markup Language (HTML). HTML is responsible for telling a Web browser
(e.g., Microsoft Internet Explorer, Mozilla Firefox, Opera, Mac Safari, Google Chrome, and so
on) how text and other objects in a Web document should appear. Whether the text should
be small, large, bold, underlined, or right or left justified is largely determined by the HTML
embedded in a Web page.

As a consumer of Web pages, you rarely experience HTML directly; it’s hidden from the end
user by the browser. However, as a creator of content, you need to be intimately familiar with
HTML and its uses, which is why we are starting from scratch and covering some basics first.
Don’t worry, the good stuff is right around the corner and we will get started creating actual
content soon enough.

Understanding Hypertext
By its very nature, the Web and its content overcome many of the limitations of standard, linear
text. This concept is best illustrated by a comparison of a book (in particular, a reference book)
to the Web. For example, consider a cross-reference in a book. Accessing the cross-reference
requires you to look up the page number, textual reference, or other object being referred to. On
the Web, the reference is (usually) a single mouse click away.

Also, documents on the Web can be designed to vary depending on the user accessing them.
Books, conversely, remain static objects no matter who is reading them.

The word ‘‘Hypertext’’ was created along with other Internet terms and technologies during the
evolution of the Web. It was coined to describe documents that could change, redirect, and oth-
erwise overcome the linearity of normal text. In short, ‘‘Hypertext’’ describes text on the World
Wide Web.

Understanding Markup Instructions
Markup languages are not a difficult concept to grasp; most of you have ‘‘marked something up’’
at one point or another. For example, suppose you wanted someone to highlight a paragraph in
this book. It would be fairly easy for you to instruct that person to do what you wanted — you
could simply hand the person a highlighting pen, point to the paragraph, and ask the person to
highlight it.

Note
Highlighting is only an example of what you might want to happen to a piece of text. You might want some
text to be larger, bolder, underlined, or otherwise changed. Highlighting is used in this chapter as a simple,
real-world example. �

4

Chapter 1: What Is a Markup Language?

Consider the paragraph shown in Figure 1-1, highlighted in Figure 1-2.

FIGURE 1-1

A simple paragraph

Welcome to On Target Games, the online
home of the best-selling game, Vanguard
Odyssey. Enjoy browsing the site and don’t
forget to check out the updates section.

FIGURE 1-2

The same paragraph, highlighted

Welcome to On Target Games, the online
home of the best-selling game, Vanguard
Odyssey. Enjoy browsing the site and don’t
forget to check out the updates section.

This is a relatively easy task to ask of someone and have executed, because you, and most other
people, understand the concept of paragraphs. You point to a paragraph and the person doing
the highlighting knows the boundaries — the beginning and the end of the text to be high-
lighted. If the individual were really dense or needed more explicit instructions, you could write
the instructions on or near the paragraph, as shown in Figure 1-3.

Note
Writing explicit editing instructions in or around text is generally known as marking up text. �

Notice how the instructions ‘‘bookend’’ the portion you want affected. In other words, the
‘‘begin’’ instruction appears before the text to be highlighted, while the ‘‘end’’ instruction appears
afterward. This is an important concept in text markup.

FIGURE 1-3

Explicitly designating the area to be highlighted by marking up the paragraph

Begin highlight here

Welcome to On Target Games, the online
home of the best-selling game, Vanguard
Odyssey. Enjoy browsing the site and don’t
forget to check out the updates section.

End highlight here

5

Part I: Creating Content with HTML

You might want more formatting to be done to the text. For example, suppose you wanted ‘‘Van-
guard Odyssey’’ underlined. Specifying that additional formatting could resemble the paragraph
shown in Figure 1-4.

FIGURE 1-4

Multiple formatting instructions might appear close to one another, or even nested within one
another.

Begin highlight here
Begin underline here

End underline here

Welcome to On Target Games, the online
home of the best-selling game, Vanguard
Odyssey. Enjoy browsing the site and don’t
forget to check out the updates section.

End highlight here

Understanding Markup Language
On the Web, you aren’t dealing with humans; you are dealing with computers and
software — namely, Web browsers. You create content specifying how the browser should
display it (highlighting certain pieces of text, and so on). When the browser displays the page,
it applies the appropriate formatting accordingly so the user sees the text and document as you
intended. You need a way to mark up the text so the browser understands it.

In the early 1990s, a new programming-like language was created, Hypertext Markup Language,
or HTML. Don’t let the word programming scare you — it is used here to put the word ‘‘lan-
guage’’ in context; it’s not really programming, as you will see. The language was created to
provide a way for users to mark up documents so Web browsers could display certain elements
of the document in italics, underlined, and so on.

Several requirements must be considered when telling a computer how to format text. A short
list of the requirements includes the following:

� The instructions should follow a stringent set of guidelines.

� The instructions should be included in the textual document.

� The instructions should be invisible to the end user.

6

Chapter 1: What Is a Markup Language?

� The instructions should tell the display device (usually a Web browser) where to start and
end, and how to apply the formatting specified.

Note
The first item in the preceding list, requiring a ‘‘stringent set of guidelines,’’ is very important. As with most
programming languages, a strict set of guidelines and syntax is necessary to ensure that the programmers
(Web designers) create programs (Web pages) that the computers (Web browsers) can understand.
Throughout this book, I will continually stress the standards created by organizations such as
the World Wide Web Consortium (W3C), the folks behind the World Wide Web and its related
standards. �

Essentially, a markup language is a systematized and standardized markup instruction set.

Consider how such a language would work. As in the earlier example about highlighting,
instructions could be appended to the paragraph similar to that shown in Figure 1-3. However,
because the Web page needs to be in electronic text form only (no handwriting allowed!), the
document would end up resembling something like this:

Begin Highlight Here Welcome to On Target Games, the online home of
the best-selling game, Begin Underline Here Vanguard Odyssey End
Underline Here. Enjoy browsing the site and don’t forget to check out
the updates section. End Highlight Here

It’s difficult to tell where the text and markup begin and end when the markup is used in this
way. It would be much better if the markup instructions were delimited by something so that
you, and the Web browser, could tell where and what they were.

Thankfully, in HTML the markup instructions are indeed delimited. They are enclosed in angle
brackets — more commonly known as ‘‘less than’’ and ‘‘greater than’’ signs (< and >). Further-
more, the directives don’t need the words ‘‘begin’’ or ‘‘end.’’ The beginning marks simply contain
a keyword corresponding to what the markup should accomplish, and the ending marks include
a slash (/). For example, the underlining markup directive is simply ‘‘u’’ (for underline) and it
appears as shown in the following text:

Welcome to On Target Games, the online home of the best-selling game,
<u>Vanguard Odyssey</u>. Enjoy browsing the site and don’t for-
get to check out the updates section.

The <u> designates the beginning of the underline and the </u> designates the end. This para-
graph rendered in a Web browser would resemble what is shown in Figure 1-5.

Similarly, in HTML, bold is represented by ‘‘b’’ (and), italic by ‘‘i’’ (<i> and </i>),
and so on. Other markup instructions and directives have similar tags. These tags are inserted
into Web pages, and the Web browser reads the page and uses the tags to properly format the
text and other items on the page.

7

Part I: Creating Content with HTML

FIGURE 1-5

The paragraph in a Web browser

Summary
What does all this mean? There are some basic technologies underneath the surface of the Web
to which you must pay attention. HTML is the backbone of these technologies, and knowing it
is the key to successful Web design. Understanding markup concepts is key to understanding
proper HTML use.

8

HTML Values
and Units

IN THIS CHAPTER
Basic Tag Attribute Format

Common Attributes

Text and Comments

Uniform Resource Indicators

Language and International
Options

In the previous chapter you learned what markup language is and how
it relates to HTML and the Web. Expanding on these basics, you can
add attributes to your HTML tags to further control their effect on your

documents.

Basic Tag Attribute Format
Most HTML tags support one or more attributes. These attributes are
included in the opening tag using a standard format, as follows:

attribute_name="attribute_value"

For example, the border attribute is used with the <table> tag to control
the width of the border in and around a table in the document. The
border attribute resembles the following when actually included in the
<table> tag:

<table border="1">

Pay close attention to the following rules regarding attributes:

� Any attributes in an HTML tag need to appear after the HTML tag
name.

� The attribute name must be followed immediately by an equal
sign (=).

� The attribute value needs to come immediately after the equal sign.

� The attribute value must always be enclosed in quotes, either single or
double.

9

Part I: Creating Content with HTML

Note
In previous versions of HTML, some attributes — namely, those with default values — did not need to have
a value associated with them. However, in HTML all attributes must have a value included inside the tag
with their declaration. In short, you should always provide a value with tag attributes. �

Several different types of values can be used as values for attributes:

� Text (single words, no spaces)

� Numbers (unsigned)

� Color values (color names or color values)

In the case of color values, several options can be used to specify a particular color:

� Color names (blue, black, red, and so on)

� Color values (in hexadecimal)

� Color values (in decimal)

The color name method is very straightforward; you simply specify a color as the value of the
attribute. For example, in the following color attribute snippet, the color is set simply to "blue":

color="blue"

This method accepts only a preset number of colors defined by HTML — approximately 147
different colors that can be found listed on sites such as www.w3schools.com/html/html
colornames.asp.

The hexadecimal and decimal methods of specifying colors are slightly more complex because
they allow you to actually mix colors by specifying custom amounts of the primary colors: red,
green, and blue. The correct hexadecimal format follows:

"#RRGGBB"

The color specification must begin with a pound sign (#) and be followed by six digits — the
first two digits corresponding to the value of red, the second green, and the third blue. Again,
keep in mind that these values are hexadecimal, not decimal. Consider the following codes and
corresponding values:

#FF0000 Red
#00FF00 Green
#0000FF Blue
#FF00FF Purple (Red and Blue)
#000000 Black
#FFFFFF White

For example, to set a color attribute to purple, you could use the following code:

color="#FF00FF"

10

Chapter 2: HTML Values and Units

This allows more control over the actual color, but requires you to compute the value of
the color in hexadecimal. Thankfully, most graphic editing programs contain features to
display or convert color values in hexadecimal format. For example, Figure 2-1 shows
the color selection dialog in Adobe Photoshop, which includes a hexadecimal value of the
current color.

FIGURE 2-1

Most graphic editing programs, like Adobe Photoshop shown here, include methods to specify
colors in both decimal and hexadecimal values.

The other format supported by the color attribute is the color’s RGB (red, green, blue) value in
decimal format. Instead of being prefixed by a pound sign, the RGB decimal format uses the
following format:

color="rgb(R,G,B)"

In this case, the values of the colors are specified as values between 0 and 255, or percentages
(values between 0% and 100%). For example, to set the color to purple (max red, no green,
max blue), you would use either of the following codes:

color="rgb(255,0,255)"
color="rgb(100,0,100)"

Throughout this book, the applicable attributes are discussed along with the tags to which they
apply.

Note
See the next section, ‘‘Common Attributes,’’ for attributes common to most tags. �

11

Part I: Creating Content with HTML

Common Attributes
Several attributes are available and applicable to most tags in HTML. These attributes serve the
same general purpose regardless of the tag with which they are used. The following sections
describe these tags and the purpose they serve when you apply them.

Tag identifiers – IDs and classes
As you will learn in the style and scripting sections of this book, sometimes it is advantageous to
identify particular tags so you can refer to them by other methods in the document.

IDs
The id attribute effectively assigns a unique identifier to a tag. For example, if you use
a <table> to contain inventory data, you might use the id attribute to name the table
inventory:

<table id="inventory">
...
</table>

Note
When using the id attribute, keep in mind that each tag should have a unique value for its id attribute. �

Locally — that is, within the tag — the id attribute has no real effect. However, scripts can
access and manipulate tags based on their id attribute.

Cross-Ref
For more information on how scripts can access tags based on their id attribute, see
Chapters 16 and 17. �

As you design your pages, consider whether you will need to reference any of your tags by
outside means (scripts and so on).

Classes
Classes are similar to IDs in that they help identify tags in the document for use by other
methods. However, unlike IDs, which should be unique, classes can (and should) be applied
across several tags in your document.

Applying classes to tags is similar to applying IDs and other attributes. For example, to apply a
class "emphasis" to a table tag, you would use code similar to the following:

<table class="emphasis">

As with the id attribute, the class attribute doesn’t directly affect the tag to which it is added.
What the class attribute does do is link the tag to CSS styles that also reference that specific

12

Chapter 2: HTML Values and Units

class. To completely understand the link between the two — HTML tags using classes, and styles
referencing those classes — you must understand CSS and its methods for accessing class-coded
styles. However, keep classes in mind as you code your basic HTML so you can adequately
incorporate them.

Cross-Ref
To get a better idea of how CSS styles work with class-coded HTML tags, see Chapters 25 through 38. �

Besides linking styles via the class attribute, you can also embed specific styles into the indi-
vidual tag itself using the style attribute. The style attribute has the following format:

style="style-definition; style-definition; style-definition;...

This format allows you to specify as many styles as necessary, as long as you separate them with
semicolons, as shown in the preceding example.

Text and Comments
Including text that isn’t processed by the user agent in your documents can be beneficial for a
couple of reasons. The first reason is simple documentation — that is, to make your documents
more legible and easy to follow should you need to edit them later. The second is to include
more information within the document for later access or inclusion by features supported in
upcoming browsers.

Comments
HTML comments are fairly simple to include in your document, as they have a simple format. A
comment in your document might resemble the following:

<!-- This is a comment -->

Notice that the HTML comment tag is a bit odd, given the dashes and exclamation point in the
mix. For clarity, the tag breaks down as follows:

� The tag starts with the standard left angle bracket (<).

� The next character is an exclamation point (!).

� Two hyphens (- -) follow the exclamation point.

� The text of the comment is next.

� The tag starts to close with another set of two dashes (- -).

� The tag closes with a standard right angle bracket (>).

Note
You cannot nest comments within one another. �

Comments are best used for short text, not for commenting out large sections of HTML code.

13

Part I: Creating Content with HTML

CDATA sections
Larger comments can make use of CDATA structures — structures created for other markup
specifications but enabled in most user agents for XML, as well as HTML (XHTML), rendering.
Hence, CDATA is used often for commenting large sections of code in HTML documents.

The format of the CDATA tag is as follows:

<![CDATA[Commented text goes here]]>

The CDATA tag has vaguely familiar syntax:

� The tag begins with an angle bracket (<).

� The next character is an exclamation point (!).

� The next few characters define the XML tag ([CDATA[).

� The text of the comment is next.

� The tag begins to close with the two brackets (]]).

� The tag closes with the right angle bracket (>).

Like the comment tag, you cannot nest CDATA tags within each other.

Tip
The text within a comment or CDATA section is still delivered to the browser and can be seen if the user
chooses to reveal the source of the page. The data in these sections is just not rendered as visible text. �

Uniform Resource Indicators
Uniform resource indicators (URIs) are highly structured lines of text that refer to other
resources — locally or on the Internet. In short, URIs are what make the Web the
Web — giving pages the ability to provide a link to another page on the Internet. For
example, an automobile manufacturer’s website may contain links to the different models of
cars the manufacturer makes, links to dealerships around the nation, or links to documents of
specifications for different vehicle models.

Note
The phrase uniform resource indicator (URI) is the preferred name for a link on the Internet. Previously,
such a link was commonly referred to as a uniform resource locator (URL). �

The format of the URI is shown in Figure 2-2.

Notice how the URI includes the protocol that should be used to reach the URI resource. This is
typically Hypertext Transfer Protocol (HTTP, transferring HTML documents), but it can be other
protocols such as File Transfer Protocol (FTP), which transfers all manner of files.

14

Chapter 2: HTML Values and Units

FIGURE 2-2

The format of a URI

http://www.example.com/products/products.html

Protocol Server Directory File/page

URIs are used as values for attributes in several different tags, including anchors (used for links
to other documents) and images (used to insert images in a document). Consider these two
examples, where the URI is underlined for emphasis:

Details

When you construct a URI for tags in your documents, keep the various pieces of the URI in
mind and always try to provide as much detail in your URIs as possible.

Cross-Ref
For more information on URIs and links, see Chapter 8. �

Language and International Options
Several tag attributes can be used to specify language and international options for your
documents and individual tags within your documents. The following sections describe those
attributes.

Language code
Most tags support the lang attribute, which defines the language in which the content of the
tag should be displayed. For example, specifying en corresponds to English; en-US specifies the
United States version of English (as opposed to UK). This attribute has the same format as the
rest of the attributes:

lang="en-US"

Tip
Valid language codes can be found in RFC1766, a copy of which is online at www.ietf.org/rfc
/rfc1766.txt. �

Text direction
Along with language specification is text direction. You can specify the direction as right to
left (rtl) or left to right (ltr). The actual direction is specified using the dir attribute in
whichever tag you want or need to specify it.

15

Part I: Creating Content with HTML

Tip
The Unicode specification, available online at www.unicode.org/unicode/standard/versions/,
provides more details on the direction of text in different languages and conditions. �

Summary
This chapter covered the basics of supplying attributes to HTML tags, including using proper
attribute syntax in your HTML, adding identifiers and class attributes, inserting text and
comments in your HTML documents, using a URI, and placing international attributes in your
document’s tags. Subsequent chapters cover individual tags, their formatting, and specific usage.

16

What Goes into a Web
Document?

IN THIS CHAPTER
Specifying Document Type

Overall Document Structure:
HTML, Head, and Body

Style Definitions

Block Elements: Markup for
Paragraphs and Other Blocks
of Content

Inline Elements: Markup for
Characters

Special Characters (Entities)

Organizational Elements

Linking to Other Pages

Images

Comments

Scripts

Putting It All Together

HTML has come a long way from its humble beginnings. However,
despite the fact that you can use HTML (and its derivatives) for
much more than serving up static text documents, the basic organi-

zation and structure of the HTML document remains the same.

Before we dive into the specifics of various elements of HTML, it is
important to summarize what each element is, what it is used for, and how
it affects other elements in the document. This chapter provides a high-level
overview of a standard HTML document and its elements. Subsequent
chapters cover each element and technology in detail.

Specifying Document Type
One attribute of HTML documents that is frequently overlooked is the
<!DOCTYPE> tag, used to specify a Document Type Definition (DTD). This
definition precedes any document tags and exists to inform HTML clients of
the format of the content that follows — what tags to expect, methods to
support, and so forth.

You can think of the DTD as a packing list of sorts that tells the user agent
and other clients that read the document what to expect (and not expect)
in the document, enabling the client to act more intelligently, anticipating
formatting and such. Validation systems use DTDs to actually perform the
validation, using the DTD contents as a road map and a syntax guide. HTML
editing programs can use the DTD to provide tag auto-completion tools and
while-you-type syntax checking.

17

Part I: Creating Content with HTML

The <!DOCTYPE> tag is used to specify an existing DTD. It resembles the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

This tag specifies the following information:

� The document’s top tag level is HTML (html).

� The document adheres to the formal public identifier (FPI) ‘‘W3C HTML 4.01 Strict
English’’ standards (PUBLIC "-// W3C//DTD HTML 4.01//EN").

� The full DTD can be found at the URL www.w3.org/TR/html401/strict.dtd.

Note
The DTD concept might be new to even some of the more seasoned Web developers. However, it should
be a priority to include an appropriate <DOCTYPE> tag in every Web document you produce. Doing so can
save you more work in the long run and helps ensure that your documents are rendered as you intend them
to be. �

Overall Document Structure: HTML, Head,
and Body
All HTML documents have three document-level tags in common. These tags, <html>, <head>,
and <body>, delimit certain sections of the HTML document.

The <html> tag
The <html> tag surrounds the entire HTML document. This tag tells the user agent where the
document begins and ends. You can think of the <html> tag as the virtual top and bottom of
your page, as shown in the following:

<html>
... document contents ...
</html>

Additional language attributes can also be declared within the <html> tag. Such options, notably
lang and dir (the language and directional information, respectively) are routinely contained in
the document type definition (<!DOCTYPE>). However, many experts strongly suggest including
the attributes in the <html> tag. The lang attribute typically takes a two-letter language abbre-
viation as its value, such as lang = "en" for English. The dir attribute supports one of two
values: LTR to specify the text flows left-to-right, or RTL to specify the text flows right-to-left.

The <head> tag
The <head> tag delimits the HTML document’s heading section. The document’s title, meta
information, and, in most cases, document scripts are all contained in the <head> section.

18

Chapter 3: What Goes into a Web Document?

Picture the <head> section of the document as the information commonly found in the let-
terhead or opening section of a printed document. The difference on the Web is that a good
portion of the header information is not visible to the end user.

A typical <head> section could resemble the following:

<head>
<link rel="stylesheet" type="text/css" href="/styles.css" />
<title>On Target Games Home Page</title>
<meta name="description" content="On Target Home Page" />
<meta name="keywords" content="On, Target, Games, Videos" />
<script language="JavaScript">
function NewWindow(url){
fin=window.open(url," ",
"width=800,height=600,scrollbars=yes,resizable=yes");
}
</script>
</head>

Cross-Ref
Most <head>-level tags are covered in detail in Chapter 4. JavaScript scripting is covered in more detail in
Chapters 16 and 17. �

The title element determines what the user agent displays as the page title. Most user agents
display the document title in their title bar, as shown in Figure 3-1.

The <body> tag
The HTML document’s main visual content is contained within <body> tags. That’s not to say
that everything appearing between the <body> tags will be visible, but, like a printed document,
this is where the main body of the document is placed and appears.

Note
With HTML version 4.01, most presentation attributes of the <body> tag have been deprecated in favor
of specifying these attributes as styles. In previous versions of HTML, you could specify a bevy of options,
including the document background, text, and link colors. The <body> tag’s onload and onunload
attributes, as well as global attributes such as style, are still valid. However, you should specify the other
attributes in styles instead, as in the following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

<title>Document Title</title>
<style type="text/css">
body { background: black; color: white}
a:link { color: red }

19

Part I: Creating Content with HTML

a:visited { color: blue }
a:active { color: yellow }

</style>
</head>
<body>

... document body...
</body>

</html> �

FIGURE 3-1

In most user agents, the document’s <title> (‘‘Introducing the Oasis of Tranquility’’) appears in the
user agent’s title bar.

Style Definitions
Styles have revolutionized how HTML documents are coded and rendered, and they are a tech-
nology that should not be neglected when creating Web documents.

Style definitions appear in the head section of a document, linked from a separate file, or are
included in individual tags via the style attribute.

20

Chapter 3: What Goes into a Web Document?

At their root, styles are simply an aggregation of display attributes combined to achieve a partic-
ular result. Those familiar with styles in word processing will have little trouble understanding
HTML styles. The important point about styles is that they enable you to radically change a doc-
ument’s appearance by simply applying new styles. This enables you to display the document
differently for different uses — different display or output devices, for example — or to provide
a different look and feel for different audiences.

It also enables you to make global formatting changes — change one style and every element
using that style changes too; there’s no need to change every occurrence of the styled element in
every document in which it appears.

Cross-Ref
Styles are covered extensively in the third part of this book, Chapters 25 through 38. �

Block Elements: Markup for Paragraphs
and Other Blocks of Content
As with most word processors, HTML includes several tags to format blocks of text. These tags
include the following:

� <p> — Formatted paragraphs
� <h1> through <h6> — Headings
� <blockquote> — Quoted text
� <pre> — Preformatted text
� , , <dl> — Unnumbered, ordered, and definition lists
� <center> — Centered text
� <div> — A division of the document

It helps to picture each one of these elements formatting paragraph-size chunks of text. Each of
the block elements results in a line break and noticeable space padding after the closing tag. As
such, the block elements work only on blocks of text — they cannot be used to format charac-
ters or words inside blocks of text.

Cross-Ref
You’ll find more details on block elements and their formatting in Chapter 5. �

Formatted paragraphs
The paragraph tag (<p>) is used to delimit entire paragraphs of text. For example, the following
HTML code results in the output shown in Figure 3-2:

<p>Welcome to On Target games, the online home of the best-selling
game, Vanguard Odyssey. Enjoy browsing the site and don’t forget
to check out the updates section.</p>

21

Part I: Creating Content with HTML

<p>If you have not yet played Vangard Odyssey, visit the download
section, download, install, and play the demo version.</p>

FIGURE 3-2

Paragraph tags break text into distinct paragraphs.

Cross-Ref
Paragraph tags are covered in more detail in Chapter 5. �

Headings
HTML supports six levels of headings. Each heading uses a large, usually bold character-
formatting style to identify itself as a heading. The following HTML example produces the
output shown in Figure 3-3:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<body>
<h1>Heading 1</h1>
<h2>Heading 2</h2>
<h3>Heading 3</h3>

22

Chapter 3: What Goes into a Web Document?

<h4>Heading 4</h4>
<h5>Heading 5</h5>
<h6>Heading 6</h6>
<p>Plain body text.</p>
</body>
</html>

FIGURE 3-3

HTML supports six levels of headings.

The six levels begin with Level 1, considered highest or most important, and go to Level 6, the
lowest, least important. Although there are six predefined levels of headings, you probably will
find yourself using only three or four levels in your documents. There are no restrictions regard-
ing specific levels. You can pick and choose which levels you use; for example, you don’t have
to use <h1> and <h2> in order to be able to use <h3>. Also, keep in mind that you can tailor
the formatting imposed by each level by using styles.

That said, it’s a good idea to use the headings the way they were intended — to show the
relative importance of one heading to another, and to organize the material. Simply picking a

23

Part I: Creating Content with HTML

heading based on its size is a bad idea because you can’t always be certain the heading will be
rendered in that exact size on every user agent. However, you can be sure the headings will
retain their relative size to one another.

Quoted text
The <blockquote> tag delimits blocks of quoted text. For example, the following code sets the
review snippet off as a quote:

<p>Don’t trust us regarding the merits of our game, listen to what
others have to say:</p>
<blockquote>
I’m impressed by the depth of Vanguard Odyssey and its near perfect
blend of the RPG, shooter, and strategic genres. I give it a hearty
10 out of 10. - Acme Game Reviews
</blockquote>

The <blockquote> tag indents the paragraph to offset it from surrounding text, as shown in
Figure 3-4.

List elements
HTML specifies three different types of lists:

� Ordered lists (usually numbered)

� Unordered lists (usually bulleted)

� Definition lists (list items with integrated definitions)

The ordered and unordered lists both use a list item element (li) for each of the items in the
list. The definition list has two tags: one for list items (<dt>) and another for the definition of
the item (<dd>).

The following HTML code results in the output shown in Figure 3-5:

To reboot the router, follow these steps:
Press and hold the reset button
Wait for the power LED to turn red
Release the reset button and wait for the power LED to return
to green

Your new router has these new features:
Stateful packet inspection
Passthrough VPN support
Four gigabit ethernet ports

<dl>Popular gaming genres:
<dt>Action games
<dd>Action games are usually "run and gun" games where you run

24

Chapter 3: What Goes into a Web Document?

around shooting at things. Lots of "action" here.
<dt>Adventure games
<dd>Adventure games are played at a much slower pace. Generally
you follow a storyline that progresses slowly as your character
travels and unravels puzzles.
<dt>Role playing games (RPG)
<dd>Role playing games are very similar to adventure games, except
that the game enforces more investment in your character. The
character advances in capabilities as the game continues allowing
you to "role play" the character instead of simply controlling it.

</dl>

FIGURE 3-4

The <blockquote> tag indents the paragraph.

Because of the amount of customization allowed for each type of list, you can create many styles
of each list type. For example, you can specify that an ordered list be ordered by letters instead
of numbers.

Cross-Ref
Lists are covered in more detail in Chapter 7. �

25

Part I: Creating Content with HTML

FIGURE 3-5

A sample list in HTML

Preformatted text
Occasionally, you will want to hand-format text in your document or maintain the formatting
already present in particular text. Typically, the text comes from another source — cut
and pasted into the document — and can be formatted with spaces, tabs, and so on. The
preformatted tag (<pre>) causes the HTML client to treat white space literally and not condense
it as it usually would.

For example, the following table will be rendered just as shown:

<pre>
+---------------+------------------+
| name | value |
+---------------+------------------+
| update | 1069009013 |
| date | Wed, 8/28, 8:18pm|

26

Chapter 3: What Goes into a Web Document?

| status | 0 |
| feedupdate | 1069009861 |
+---------------+------------------+
</pre>

Divisions
Divisions are a higher level of block formatting, usually reserved for groups of related para-
graphs, entire pages, or sometimes just a single paragraph. The division tag (<div>) provides
a simple solution for formatting sections of a document. Basically, if you need to collect various
objects into a larger container, <div> is your tool.

For example, if you need a particular document section outlined with a border, you can define
an appropriate style and delimit that part of the document with <div> tags, as in the following
example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Introducing the Oasis of Tranquility</title>
<style>

.bordered {
border-style: solid;
width: 60%;
padding: 20px;
margin-left: auto;
margin-right: auto;}

.centered {
text-align: center;}

</style>
</head>
<body>
<h2>Introducing the Oasis</h2>
<p>The Oasis of Tranquility is a premier spa with an environment
designed to embrace you in an air of calming relaxation. When you
walk through our doors the outside world will slip away, as you
allow our dedicated team of professionals to pamper you in an
experience focused on personalized care. We offer a variety of salon
and spa services, which can be chosen a la carte for an individual
service or to create your own personalized package of services.
Come to the Oasis of Tranquility and let us cater to all your beauty
and relaxation needs. </p>
<div class="bordered">
<h2class="centered">Some of Our Specific Services Include</h2>
<h2>Salon Services</h2>
<p>Focusing on our clients’ individual needs, we offer services by
talented stylists, and chemical treatments delivering the most
stunning hues, all in a relaxing spa environment. Focusing on our
guests’ needs begins with an open dialogue between you and your

27

Part I: Creating Content with HTML

stylist. This communication allows our hair salon guests to get to
know their stylist, while educating the guest on how we will achieve
and maintain that specific look they desire.</p>
<p>Photographs and descriptions of the looks you desire are welcome.
Our salon artists have the knowledge, training, experience, and
creativity to make any vision reality. The same level of
personalized care is given by our nail and skincare technicians, in
order to ensure the most relaxing and effective treatments for each
individual.</p>
<h2>Spa Services</h2>
<p>The Oasis of Tranquility offers a full menu of services to renew
the real you that lies within. Begin in one of our two relaxation
centers, then enjoy an invigorating body and facial care, deep
soothing massage therapies, and a host of other indulgent treatments
that pamper you on the outside, and revive you from within. In
addition to our many spa services, take a refreshing dip in the
swimming pool, melt in one of our whirlpool spas, or rejuvenate
in the sauna. </p>
</div>
<h2>Give the Gift of Tranquility</h2>
<p>All services at the Oasis of Tranquility can be experienced
individually, or selected a la carte to create you own personalized
day of pampering. Gift certificates are excellent for surprising
your loved ones with an hour or a day of pampering and
rejuvenation.</p>
<h2>In Summary...</h2>
<p>So when you are looking for an experience that will relax,
rejuvenate, and free you from the weight and stress of everyday
life and leave you looking and feeling like the person you really
are, come to the Oasis of Tranquility.</p>
</body>
</html>

This code results in the output shown in Figure 3-6.

Cross-Ref
For more information on how to format blocks of text with the <div> tag, see Chapter 5. �

Inline Elements: Markup for Characters
The finest level of markup possible in HTML is at the character level; as in a word processor,
you can affect formatting on individual characters. This section covers inline formatting basics.

28

Chapter 3: What Goes into a Web Document?

FIGURE 3-6

<div> tags delimit sections of text and/or collections of objects.

Basic inline tags
Inline formatting elements include the following:

� Bold (b)

� Italic (i)

� Big text (big)

� Small text (small)

� Emphasized text (em)

� Strong text (strong)

� Teletype (monospaced) text (tt)

29

Part I: Creating Content with HTML

For example, consider the following sample paragraph, the output of which is shown in
Figure 3-7:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<body>
<p>This paragraph shows the various inline styles, such as
bold, <i>italic</i>, <big>big text</big>, <small>small

text</small>, emphasized text, strong text,
and <tt>teletype text</tt>.</p>
</body>
</html>

FIGURE 3-7

Inline elements can affect words or even individual characters.

Note that several inline tags, such as strikethrough (<strike>) and underline (<u>) tags, have
been deprecated in the current HTML specifications. Even the font tag () has been
deprecated in favor of styles. As for the strikethrough and underline tags, they have been

30

Chapter 3: What Goes into a Web Document?

replaced by delete () and insert (<ins>), which are used for revisions (delete for deleted
text, insert for inserted text).

Although it seems counterintuitive, most Web experts recommend using strong instead of
bold, and emphasized instead of italic, when formatting text. The reasoning has to do with
what the styling is supposed to accomplish — strengthen or emphasize text — not how it looks
(bold or italic). If you use the appearance styles, most user agents will strive to achieve that par-
ticular appearance, even if the representation is different.

Cross-Ref
Chapter 6 contains more information on inline elements. �

Spanning text
Span tags () are used to span styles across one or more inline characters or words.
In effect, the tag enables you to apply your own inline styles. For example, if you
need to specify text that is bold, red, and underlined, you could use code similar to the
following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd"><html>

<head>
<style>
.emphasis { color: red; text-decoration: underline;

font-weight: bold;}
</style>
</head>
<body>
<p>This text is emphasized as red, bold, and

underlined, while this text is not.</p>
</body>
</html>

The tag enables you to apply the stylistic formatting inline, exactly where you
want it. Without any stylistic additions, the tag has no effect on the text it
surrounds.

Special Characters (Entities)
Some special characters must be referenced directly instead of simply typed into the document,
and some of these characters cannot be typed on a standard keyboard, such as the trademark
symbol (™) or the copyright symbol (©). Others could cause the HTML client confusion (such
as the angle brackets,< and >). These specially coded characters are commonly referred to as
character entities.

31

Part I: Creating Content with HTML

Entities are referenced by using a particular code in your documents. This code always begins
with an ampersand (&) and ends with a semicolon (;). Three different ways to specify an entity
exist:

� mnemonic code (such as copy for the copyright symbol)

� decimal value corresponding to the character (such as #169 for the copyright symbol)

� hexadecimal value corresponding to the character (such as #xA9 for the copyright symbol)

Note that if you use the decimal or hexadecimal methods of specifying entities, you need to pre-
fix the numeric value with a number sign (#).

The following are all examples of valid entities:

� — A nonbreaking space (used to keep words together)
� < — The less-than symbol, or left-angle bracket (<)
� © — The copyright symbol (©)
� & — An ampersand (&)
� — — An em dash (—)

Cross-Ref
You’ll find more information on entities in Chapter 14. �

Organizational Elements
Two HTML elements help organize information in a document: tables and forms.

Tables enable you to present data in column and row format, much like a spreadsheet.

Forms enable you to present (and retrieve) data using elements common to GUI interfaces, such
as text boxes, check boxes, and lists.

The following sections describe these elements.

Tables
HTML tables are very basic but can be very powerful when used correctly. At their base level,
tables can organize data into rows and columns. At their highest level, tables can provide com-
plicated page design, much like a page in a magazine or newspaper, providing columns for text
and sections for graphics, menus, and so on.

Tables have three basic elements and, hence, three basic tags:

� The table definition itself is defined and delimited by <table> tags.

� Rows of data are defined and delimited by <tr> (table row) tags.

� Table cells (individual pieces of data) are defined and delimited by <td> (table data) tags.
Alternatively, <th> tags can be used for cells in header rows. Table cells, when stacked in
even rows, create table columns.

32

Chapter 3: What Goes into a Web Document?

For example, consider the following simple table code, which results in the output shown in
Figure 3-8:

<table border="1">
<tr><th>Upgrade</th><th>Unit Cost</th></tr>
<tr><td>Cargo Container</td><td>300</td></tr>
<tr><td>Extended Range Radar</td><td>1000</td></tr>
<tr><td>Redundant Computers</td><td>4000</td></tr>
<tr><td>Turret Auto-Target</td><td>500</td></tr>
<tr><td>Zeno Hyperdrive</td><td>10000</td></tr>

</table>

FIGURE 3-8

Simple tables can be used to display data in rows and columns, as in a spreadsheet.

This example is straightforward because the table is simple. However, because you can both use
a number of options in formatting table elements and nest tables within tables, the tables in your
HTML documents can become very complicated (and very powerful).

Tables have long been used to control page layout using similar methods to those used for dis-
playing columnar data. Figure 3-9 shows a Web page that uses tables for its layout; the table
borders are displayed to illustrate how the tables enforce the page layout.

33

Part I: Creating Content with HTML

FIGURE 3-9

Complex tables can be used for complex, custom formatting jobs.

Cross-Ref
Tables are covered in detail in Chapter 9. �

Forms
HTML forms provide a method to use standard GUI elements to display and collect data. HTML
forms offer the standard litany of GUI elements, including text boxes, check boxes, pull down
(also referred to as drop-down) lists, and more. HTML forms provide a rudimentary method of
collecting data and passing that data to a data handler for validation, storage, comparison, or
other tasks.

A typical HTML form resembles the following code, the output of which is shown in
Figure 3-10:

<form>
<!-- Text field -->
Name: <input type="text" name="name" size="40">

34

Chapter 3: What Goes into a Web Document?

<!-- Radio buttons -->
Age:

<input type="radio" name="age"> < 20
<input type="radio" name="age"> 21 -- 30
<input type="radio" name="age"> 31 -- 40
<input type="radio" name="age"> 41+

<!-- Select list -->
What is your favorite type of game?

<select name="game">
<option name="action">Action
<option name="adventure">Adventure
<option name="rpg">RPG

</select>

<!-- Check boxes -->
How may we contact you for more information?

<input type="checkbox" name="phone">Phone

<input type="checkbox" name="mail">Mail

<input type="checkbox" name="email">Email

<input type="checkbox" name="no">Do not contact me

<p><input type="submit" value="Submit" />
<input type="reset" /></p>
</form>

Note
The preceding example form is very simple; it shows only some basic elements, and has no handler to pro-
cess the data collected by the form. Real-world forms can be quite complex and usually require validation
scripts to ensure that the data collected is valid. However, this simple form illustrates the amount of control
you can assert over data and format using HTML. �

Cross-Ref
Forms are covered in detail in Chapter 11. �

Linking to Other Pages
The main advantage to the World Wide Web is the ability to link to other documents on the
Web. For example, if you had a page that detailed local zoning laws, you might want to include
a link to a local government site where additional information could be found. A link typically
appears as underlined text and is often rendered in a different color than normal text.

For example, a link might appear in a user agent as follows:

More information can be found here.

The word here is linked to the other document; when the user clicks the word, the user agent
displays the specified page.

35

Part I: Creating Content with HTML

FIGURE 3-10

Form elements provide standard GUI controls for displaying and collecting data.

Links are created by use of the anchor tag, <a>. At its simplest level, this tag takes one
argument — the page to link to — and surrounds the text to be linked. The preceding example
could be created with the following code:

More information can be found
here

The anchor tag’s href, or Hypertext REFerence attribute, specifies the protocol and destination
of the link. The example specifies http:// because the destination is a document to be deliv-
ered via the HTTP protocol. Other protocols (such as ftp:// or mailto:) can also be used
where appropriate.

Additional attributes can be used with the anchor tag to specify such things as where the new
document should be opened (for example, in a new window), the relationship between the doc-
uments, and the character set used in the linked document.

You can also use a variant of the anchor tag to mark specific places in the current document — a
bookmark of sorts. A link can then be placed elsewhere in the document that can take the user
to the specific place. For example, consider this HTML code:

36

Chapter 3: What Goes into a Web Document?

For more information see Chapter 2
. . . More HTML . . .
Chapter 2

In this example, the user can click the Chapter 2 link to move to the location of the Chapter 2
anchor. Note that the href link must include the hash, or pound, symbol (#), which specifies
that the link is an anchor instead of a separate page.

Cross-Ref
More information on links and anchors can be found in Chapter 8. �

Images
One of the great innovations the World Wide Web and HTTP brought to the Internet was the
ability to serve up multimedia to clients. The precursors to full-motion video and CD-quality
sound were graphical images in the Web-friendly Graphics Interchange Format (GIF) and Joint
Photographic Experts Group (JPEG) format.

You can include images in HTML documents by using the image tag (). The image tag
includes a link to the image file as well as pertinent information used to display the image (for
example, the image’s size). A typical image tag resembles the following:

<img src="/images/tmoore.jpg" alt="A picture of Terri"
width="100" height="200" />

The preceding example would result in the image tmoore.jpg being displayed at the
location in the document where the tag appears. In this case, the image is in the images
directory of the current server and will be displayed without a border, 100 pixels wide by
200 pixels high. The alt attribute provides a textual alternative for the visually impaired,
or user agents that cannot display graphics (or whose users have configured them not to).
The attribute can also be used to display additional information about the image, as most
user agents will show the attribute’s value as a tooltip when the mouse is hovered over
the image.

Images can also be navigation aids, enabling the user to click certain parts of an image to
perform an action, display another document, and so on. For example, a map of the United
States could be used to help users select their state — clicking a state would bring up the
applicable page for that state. Navigational images are commonly referred to as image maps
and require a separate map of coordinates and geometric shapes to define the clickable
areas.

Cross-Ref
You’ll find more information on images in Chapter 12. �

37

Part I: Creating Content with HTML

Comments
Although HTML documents tend to be fairly legible all on their own, there are several
advantages to adding comments to your HTML code. Some typical uses for comments include
aiding in document organization and document-specific code choices, or marking particular
document sections for later reference.

HTML uses the tag <!-- to begin a comment, and the tag --> to end a comment. Note that
the comment can span multiple lines, but the user agent ignores anything between the comment
tags. For example, the following two comments will both be ignored by the user agent:

<!-- This section needs better organization. -->
and
<!-- The following table needs to include these columns:
Age
Marital Status
Employment Date

-->

Scripts
HTML is a static method of deploying content; the content is sent out to a user agent where
it is rendered and read, but it typically doesn’t change once it is delivered. However, there is a
need in HTML documents for such things as decision-making ability, form validation, and, in the
case of Dynamic HTML (DHTML), dynamic object attribute changes. In those cases (and more),
client-side scripting can be used.

Cross-Ref
For more information on client-side scripting, see Chapters 16 and 17. �

Client-side scripting languages, such as JavaScript, have their code passed to the user agent
inside the HTML document. It is the client’s responsibility to interpret the code and act
accordingly. Most client-side scripts are contained in the HTML document’s <head> section
within <script> tags, similar to the following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<script language="JavaScript">
function MiscWindow(w,h,url){

opts = "width="+w+",height="+h;
opts += ",scrollbars=no,resizable=yes";
fin = window.open(url,"",opts);

}
</script>

</head>...

38

Chapter 3: What Goes into a Web Document?

You can also include the JavaScript in an external file and use the <script> tag’s src attribute
to reference it. For example, the following script section references the external script file
utility.js:

<script type="text/JavaScript" src="utlity.js"></script>

Note that the <script> section still includes an opening and closing tag. When would you want
to place your code in an external file? When the scripts are used by multiple documents, placing
the code in an external file enables you to reference the one copy from multiple documents and
to maintain one copy of the code, not one copy per document.

In many cases, the document uses events as triggers to call the script(s). Events can be con-
nected to scripts via HTML event-handler attributes. These attributes can be included in links
(onclick), forms (onchange), and elements such as the body tag (onload, onunload).

Putting It All Together
As you can see, the standard HTML document is a fairly complex beast. However, when taken
piece by piece, the document is really just like any other document.

The following HTML listing shows how all of these pieces fit together:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<meta ... meta tags go here ... >
<title> ... title of the page/document goes here< .../title>
<link rel="stylesheet" href=" ...external style sheet name ..."

type="text/css">
<style>
... any document specific styles go here ...

</style>
<script>
... client-side scripts go here ...

</script>
<body>
... body of document goes here ...

</body>
</html>

All HTML documents should have a <DOCTYPE> declaration, <html> and <body> tags, and at
least a <title> within the <head> section. The rest of the elements are strictly optional, but
they help define a document’s purpose, style, and ultimately its usability, as you will see in sub-
sequent chapters.

39

Part I: Creating Content with HTML

Summary
This chapter covered the basic elements that make up a Web document — the frame of the doc-
ument, the heading, and the basic markup for the content. You learned what a document type
definition is and why it’s important to specify one for your documents. You read about fram-
ing tags <html>, <head>, and <body>, including styles in your documents, tag elements used
for marking up blocks of content, and those for marking up inline pieces of text. In addition,
this chapter discussed placing character entities in your content, tag elements used to organize
content, linking to other documents and sections, as well as including images, comments, and
scripts in your documents.

40

The HEAD Elements

IN THIS CHAPTER
Specifying the Document Title

Providing Information to
Search Engines

Setting the Default Path

Script Sections

Style Sections

Specifying Profiles

Background Color and
Background Images

You have seen what various pieces make up HTML documents and
how they all fit together. In Chapters 5 through 14 you will see how
each individual piece is formatted and placed in the document. This

specific chapter deals with the elements in the head section of the document.

Specifying the Document Title
The <head> element of an HTML document contains several other elements,
including the document title. The document title is delimited between
<title> tags and can include any character or entity. For example,
consider the following <head> section, which includes a registration mark:

<title>Welcome to On Target Games ®</title>

This title shows in the title bar of Internet Explorer, as shown in Figure 4-1.

While it is useful to have the title of your document in the title bar of the
client’s browser, the title is used in several other locations as well. It is used
as the default shortcut/favorite name in most browsers, linked to in most
search engines, and so on. As such, you should always include a title for
your documents, and make it as descriptive (but concise) as possible.

Providing Information to Search
Engines
Your document’s <head> section can also include <meta> tags. These tags
are not rendered as visible text in the document; they are used to pass
information and commands to the client browser.

41

Part I: Creating Content with HTML

FIGURE 4-1

Entities are rendered correctly in document titles.

As its name implies, the <meta> tag contains meta information for the document. Meta informa-
tion is data about the document itself, instead of information about the document’s contents.
Most of a document’s meta information is generated by the Web server that delivers the docu-
ment. However, using meta tags you can supply different or additional information about the
document.

The amount of information you can specify with <meta> tags is extensive. If you use the
HTTP-EQUIV parameter in the <meta> tag, you can supply or replace HTTP header information.
For example, the following <meta> tag defines the content type of the document as HTML with
the Latin character set (ISO-8859-1):

<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1" />

In addition, you can control some aspects of how the client browser treats the document. You
can specify how long the document should be cached (if cached at all), refresh the browser with
a different page after a delay, and so forth. For example, the following two <meta> tags tell the
browser not to cache the current page (pragma, no-cache) and to refresh the browser window
with a different page after three seconds (refresh):

<meta http-equiv="pragma" content="no-cache" />
<meta http-equiv="refresh"
content="3;URL=http://www.example.com/newpage.html" />

42

Chapter 4: The HEAD Elements

Note
For a comprehensive list of HTTP 1.1 headers, see the HTTP 1.1 definition on the W3C website:
www.w3.org/Protocols/rfc2616/rfc2616.html. �

A bevy of supplemental data can be included using <meta> tags. Many Web authoring tools
embed their name, version, and assorted authoring information, for example. In addition, you
can include categorization information and assorted short notes.

Most search engines have stopped using the meta description and meta keywords as the sole
source of indexing a document, relying instead on their own, proprietary indexing methods.
However, several smaller robots still use these fields and the majors sometimes reference them.

The description and keywords data is provided by the following two <meta> tags:

<meta name="description" content="The affordable day spa" />
<meta name="keywords" content="facial treatments, hair,
manicures, pedicures, relaxation, spa, pools, sauna" />

Setting the Default Path
When defining links and references in your HTML document, be as exact as possible with your
references. For example, when referencing a graphic with an tag, you should make a habit
of including the protocol and the full path to the graphic, as shown here:

However, it isn’t very practical to type the full path to every local element referenced in your
document. As such, a document residing on the example.com server could reference the same
graphic with the following code:

What if the document is relocated? The images directory might no longer be a subdirectory of
the directory where the document resides. The image might be on a separate server altogether.

To solve these problems, you could use the <base> tag. The <base> tag sets the default doc-
ument base — that is, the default location for the document. Using the preceding example, a
document in the root directory of the example.com server would have a <base> tag similar to
the following:

<base href="http://www.on-target-games.com/images/" />

Any absolute references in the document (those with full protocol and path) will continue to
point to their absolute targets. Any relative references (those without full protocol and path) will
be referenced against the path in the <base> tag. Meta tags can also be used to refresh a doc-
ument’s content or redirect a client browser to another page. Refreshing a document is useful

43

Part I: Creating Content with HTML

if it includes timely, dynamic data, such as stock prices. Redirection comes in handy when a
document moves, as you can use a redirect to automatically send a visitor to the new document.

To refresh or redirect a document, use the http-equiv "refresh" option in a <meta> tag.
This option has the following form:

<meta http-equiv="refresh" content="seconds_to_wait; url" />

For example, suppose that a page on your site (on-target-games.com) has moved. The page
used to be on the server’s root as listing.html, but now the page is in an oldpage directory
as listing.html (/oldpage/listing.html). You want visitors who previously bookmarked
the old page to be able to get to the new page. Placing the following document in the server’s
root (as bio.html) would cause visitors to automatically be redirected to the new page after a
three-second wait:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>This Page Has Moved!</title>
<meta http-equiv="pragma" content="no-cache" />
<meta http-equiv="refresh" content="3;

URL=http://www.on-target-games.com/oldpage/listing.html" />
</head>
<body>
<p>This page has moved. You will be redirected to the new page
in 3 seconds, or you can click the link below.</p>

The new page.
</body>
</html>

To refresh the current page every three seconds, use the following:

<meta http-equiv="refresh" content="3" />

Tip
Using the pragma no-cache meta tag along with the refresh meta tag is always a good idea. This helps
keep the browser from caching the document and displaying the cached copy of the document instead of
the updated document. Because different browsers treat no-cache differently, it is also wise to add an
expires meta tag, as shown here:

<meta http-equiv="expires" content="0" />

This tag causes the document to be immediately expired in the cache and, hence, not cached at all. �

The refresh technique is especially useful on pages that show timely information. By forcing the
page to reload at certain intervals, you can help ensure that site visitors see current information.

44

Chapter 4: The HEAD Elements

Script Sections
HTML documents can include scripting sections. Such sections typically contain JavaScript
scripts, but other types of scripting (for example, VBScripting) can also be used.

All scripting in a document should appear between <script> tags. These <script> sections
can be placed in the document head section or anywhere in the body. The <script> tags
should adhere to the following format:

<script type="text/javascript">
...scripting code...

</script>

Note that the MIME type of the code (in this case text/javascript) is included as a type
attribute.

Note
The exception to where code should appear in a document is within event attributes within specific tags.
For more information, see Chapters 16 and 17. �

Style Sections
Style blocks are another large section that can appear in the head section of the document. Style
blocks are formatted as shown in the following listing:

<style type="text/css">
...style definitions...
</style>

Note
As with scripts, styles can also be used as attributes of HTML tags (the style attribute). More information
on styles can be found in Chapters 25 through 38. �

Specifying Profiles
Profiles are an interesting concept, allowing XML-based data structures to be attached to HTML
documents. These profiles enable compatible readers to return the profile information, specifying
items such as the document’s author, last modification date, and more.

A profile document is a properly formatted HTML document consisting of a definition list con-
taining terms and data of the profile itself. Consider the following document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en" >

45

Part I: Creating Content with HTML

<head><title>HTML Profile Document</title></head>
<body>
<dl class="profile">
<dt id=’author’>author</dt>
<dd>Author of the document</dd>

<dt id=’keywords’>keywords</dt>
<dd>A list of the keywords for the document.</dd>

<dt id=’copyright’>copyright</dt>
<dd>Copyright information for the document</dd>

<dt id=’date’>date</dt>
<dd>The date that the document was last updated.</dd>

</dl>

</body>
</html>

Additional information can be added to the profile as additional definitions, as required.

To tie the profile to a document, you use the profile attribute in the document’s <head> tag. For
example, suppose the profile document were at the following address:

http://www.example.com/profiles/profile1.html

You would use the following <head> tag:

<head profile="http://www.example.com/profiles/profile1.html">

Applicable readers and browsers can use this information to access the profile appropriately.

Background Color and Background Images
One of the easiest changes you can effect on your Web pages is to alter the background color
of your document. Most browsers use a white background, so specifying a different background
color or a background image can easily make your document distinct.

Specifying the document background color
If you code your HTML against the transitional format of HTML, you can use the bgcolor
attribute in the <body> tag. However, using that attribute is not recommended for the following
reasons:

� The attribute is not valid for strict HTML and might impair the validation of your
document.

� If you want to change your documents’ background color, you must change each
individual body tag in each document.

46

Chapter 4: The HEAD Elements

A better practice is to use appropriate styles, typically in an external style sheet.

The document background color is set using the background-color property. For example, to
set the background color to blue, you would use the following style definition:

<style type="text/css">
body { background-color: blue;}

</style>

Cross-Ref
For more information on styles, refer to Chapters 25 through 38. �

Specifying the document background image
Besides setting the document’s background to a solid color, you can also specify an image to
use as the background. As with the background color attribute for the body tag, there is also a
background image attribute (bgimage) for the body tag. However, as with the background color
attribute, it is not a good idea to use that attribute.

Instead, use the background-image property as a body style, as shown here:

<style>
body { background-image: url(<char:Variable>path_to_image</char:Variable>);}

</style>

For example, the following style results in grid.jpg being placed as the document’s back-
ground:

<style type="text/css">
body { background-image: url(images/grid.jpg);}

</style>

The effect is shown in Figure 4-2.

Note
When you change the background color to a dark color or use a dark image, you should also change the
text color so it will contrast with the background. For example, the following style sets the body background
color to black, and the body text color to white:

<style>
body { background-color: black; color: white;}

</style> �

47

Part I: Creating Content with HTML

FIGURE 4-2

The grid in the document’s background is courtesy of an image, grid.jpg.

Summary
This chapter described the basic elements you need in all of your HTML documents. You learned
how to set the document’s title, how to include supplemental information in your documents
using <meta> tags, how to use the <base> tag to set a default path for your document’s URIs,
and how to automatically refresh or redirect a document after a timed delay. The chapter also
covered embedding scripts in HTML documents, placing style sections in a document, using pro-
files, and setting your document’s background color and/or using an image as your background.

The next few chapters cover various formatting elements in more detail.

48

Text Structuring
Essentials

IN THIS CHAPTER
Formatting Paragraphs

Line Breaks

Divisions

Rules

Block Quotes

Preformatted Text

The Web is used to transfer information in a variety of formats, but
text is still the main form of communication across the Internet and
even on the multimedia-rich World Wide Web. As such, it is impor-

tant to understand the methods you can employ with HTML to format text.

This chapter covers the big picture — that is, text at the division and para-
graph level. The next chapter delves into character formatting and other
inline formatting concepts.

Formatting Paragraphs
The most basic form to fit text within, whether in a book or on a Web page,
is the paragraph. As you might have guessed, HTML supplies a specific tag
to format text into discrete paragraphs.

The paragraph tags, <p> and </p>, provide the most basic block formatting
for Web page text. Their use is straightforward: Place the opening tag (<p>)
at the start of the paragraph and the ending tag (</p>) at the end of the
paragraph. The user agent will format the paragraphs appropriately, usually
by placing a blank line between them.

As an example, consider the following HTML code. Figure 5-1 shows the
result of running this code in a browser.

<p>Welcome to The Oasis of Tranquility -- your source of day
spa services at hair salon prices. Come visit us for that
deep tissue or relaxing massage, facial, manicure, or
hair coloring you have been putting off.</p>
<p>Our concept is simple -- provide luxurious service affordable
to most consumers. So stop in and let our experts please and
pamper you today.</p>

49

Part I: Creating Content with HTML

FIGURE 5-1

Most user agents format paragraphs by placing a blank line between them.

You can, and typically should, use paragraph tags to encapsulate text even when the text is
within a higher-level block tag. For example, note how the paragraph in the following code is
placed within paragraph tags even though it is already within table data (<td>) tags:

<td>
<p>Games with an "E" rating (Everyone) are suitable for
consumers age 6 and older. These games may contain a
minimal amount of mild violence (typically animated) and/or
mild language.</p>

</td>

Cross-Ref
The <td> and other table tags are discussed in detail in Chapter 9. �

Other objects besides textual paragraphs can appear between paragraph tags also. For example,
you might want an image to be vertically spaced evenly between two paragraphs. Placing the
image tag within its own set of paragraph tags accomplishes that feat, as shown by the following
code and corresponding rendering in the browser in Figure 5-2:

<p>Welcome to The Oasis of Tranquility -- your source of day
spa services at hair salon prices. Come visit us for that
deep tissue or relaxing massage, facial, manicure, or
hair coloring you have been putting off.</p>

50

Chapter 5: Text Structuring Essentials

<p><img src="images/massage.jpg" width="328px" height="232"
alt="Massage" /></p>

<p>Our concept is simple -- provide luxurious service affordable
to most consumers. So stop in and let our experts please and
pamper you today.</p>

FIGURE 5-2

Paragraph tags aren’t just for text; they can lend their block element encapsulation to any nonblock
element.

Line Breaks
Occasionally, you will want to break a line of text without ending the paragraph in which it
appears. Reasons for doing so will vary, but typically the goal is to avoid the blank line that
would result when the user agent displays your text.

For those times when you want to prematurely end a line but not the paragraph, use the line
break tag (
).

An address block provides a good example of where to use the line break tag. Consider the
following two address blocks and how they render in the browser shown in Figure 5-3:

<p>On Target Games</p>
<p>1 Target Place</p>

51

Part I: Creating Content with HTML

<p>Fishers, IN 46038</p>
<p>On Target Games

1 Target Place

Fishers, IN 46038</p>

FIGURE 5-3

Using the line break tag enables you to keep your text tight while still being able to prematurely
break lines.

Note that the line break tag does not have a closing mate and requires the ending slash. As
such, the line break tag does not qualify as a block tag and must be contained within block tags.
Notice in the preceding code example that the second address is still contained within paragraph
tags — the line break tag is used within the paragraph to break lines.

Divisions
Divisions are the big brother of paragraphs and are used to keep related objects (paragraphs,
graphics, and so on) together. Divisions also allow the grouped objects to inherit most of the
same formatting by applying the formatting to the division itself, which obviates the need to
apply the formatting individually to each object contained within it.

Cross-Ref
Applying styles to divisions and affecting the divisions’ contents is covered in Chapter 34. �

52

Chapter 5: Text Structuring Essentials

Division tags (<div> and </div>) are one of the highest-level block tags available in HTML.
It is very typical to see HTML document bodies coded with blocks of divisions, similar to the
following:

<body>
<div>

...HTML content...
</div>
<div>

...some other HTML content...
</div>
<div>

...still some other HTML content...
</div>

</body>

Because divisions are high-level block tags, they should be used to contain other block tags
such as paragraph tags. While rarely done, placing a division within another block tag is not
unheard of.

Conceptually, it helps to think of divisions as chapters in a book, keeping the paragraphs
together. Better yet, given the rich visual nature of Web pages, think of divisions as defining the
areas of a magazine page — the left-most column of text, the ad in the upper-right corner of
the page, the right-most column of text, the author’s bio block, and so on. In fact, given a few
well-designed divisions and the appropriate content, you can design a Web page to resemble
almost any magazine layout.

For example, consider the following example, which defines four divisions to encapsulate
different content on the page. The result of this code is shown in Figure 5-4.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>

<head>
<meta http-equiv="content-type"

content="text/html; charset=iso-8859-1"/>
<meta name="description" content="description"/>
<meta name="keywords" content="keywords"/>
<meta name="author"

content="Template design by Arcsin -
http://templates.arcsin.se"/>

<link rel="stylesheet" type="text/css" href="default.css"
media="screen"/>

<title>The Oasis of Tranquility</title>
</head>

<body>

<div class="container">

53

Part I: Creating Content with HTML

<div class="top">
 <!--

Bitter Sweet -->
</div>

<div class="header"></div>

<div class="main">

<div class="item">
<div class="date">
<div></div>

</div>
<div class="content">
<h1>About The Oasis of Tranquility</h1>
<div class="body">
<p>The Oasis of Tranquility is a premier spa, with an
environment designed to embrace you in an air of calming
relaxation. When you walk through our doors, the
outside world will slip away, as you allow our
dedicated team of professionals to pamper you in an
experience focused on personalized care. Browse our site
for the full experience that can be your own Oasis.</p>
</div>

</div>
</div>

<div class="item">
<div class="date">

<div>APR</div>
21

</div>
<div class="content">

<h1>2 For 1 Manicure Special</h1>
<div class="body">
<p>Treat a friend to the experience of the Oasis. Use the
coupon below to receive two manicures for the price of one
through the month of May.</p>
<div class="coupon">
<p>Present this coupon for a free manicure with the
purchase of a similar manicure. Good during the same visit
only, one per customer, other limitations may apply.</p>
<p class="barcode">241 Manicure, valid May 2009 <img
src="img/barcode.jpg"

width="126px" height="15px"></p>
</div>
</div>

</div>
</div>

54

Chapter 5: Text Structuring Essentials

<div class="item">
<div class="date">

<div>APR</div>
10

</div>
<div class="content">

<h1>Visiting Hair Specialist</h1>
<div class="body">
<p>The Oasis is pleased to announce another visit from hair
specialist Samual Hart.
Make an appointment in the next two weeks for your
personalized consultation on color, style, and product.</p>
</div>

</div>
</div>

</div> <!-- Main -->

<div class="navigation">

<h1>Salon Services</h1>

Hair Care
Nail Care

<h1>Spa Services</h1>

Skin Care
Massage

<h1>Relaxation Amenities</h1>

Amenities

<h1>About the Oasis</h1>

About the Oasis
About the Staff

</div>

<div class="clearer"></div>

<div class="footer">Copyright © 2009 Oasis of Tranquility.
All Rights Reserved.</div>

</div> <!-- Container -->

</body>

</html>

55

Part I: Creating Content with HTML

FIGURE 5-4

Many divisions can be created to hold various pieces of content on the same page.

Containing
pages

Menu
blocks

Title blocks

Headings

Date tabs

Content

Sub content

Rules
Rules are horizontal lines largely used to break sections of text into smaller chunks, or other-
wise delimit the text in some way. For example, the headings in this book use rules under the
heading text to set the heading off from the text to which it refers.

In HTML, rules are inserted into documents using the horizontal rule (<hr />) tag. Like many
other empty tags that do not need to encapsulate anything, the <hr /> tag is a solitary tag,
having no closing mate, but therefore requiring the obligatory slash inside the tag.

An <hr /> tag results in a gray, beveled line in most browsers, although the actual way the rule
looks in the user agent is up to the agent itself. The rule results in a line break where the tag is
placed, and the line itself stretches from margin to margin of the container (page, block, element,
and so on) in which it is placed.

A default rule is shown in Figure 5-5.

56

Chapter 5: Text Structuring Essentials

FIGURE 5-5

A close-up of a horizontal rule rendered in Internet Explorer

The look of rules can be tailored to some extent using styles. For example, you can change the
color using the color property, and the length of the line using the width. That being said,
using styles to create and manipulate block element borders is generally a more flexible approach
to custom rules.

Cross-Ref
More information on the available style properties can be found in Part III of this book. �

Block Quotes
Occasionally, you will want to set blocks of text apart from the general text around it. One fre-
quent example is the use of quotations, as shown in Figure 5-6.

FIGURE 5-6

Quotations or other text that needs to be set off from text around it can use blockquote tags

57

Part I: Creating Content with HTML

The blockquote tag (<blockquote>) indents the elements it encapsulates and inserts space
above and below the blockquote section, although the latter depends on the rules of the indi-
vidual user agent rendering the element.

Consistency with the HTML standards and other documents is the main reason to continue to
use the <blockquote> tag for quotations, rather than styled paragraphs, but you might find
using styles a better, more flexible solution for your purposes.

Note
Using the <blockquote> tag to simply indent text is discouraged in favor of using styles to accomplish
such formatting. The use of <blockquote> should be limited to highlighting quoted text. �

Preformatted Text
User agents do a great job of optimizing text. Extra spaces are reduced to a single space, and
redundant formatting is reduced or removed. However, you may sometimes want to preserve
particular formatting in your text — keeping extra spacing, and so on.

The preformatted tags (<pre> and </pre>) can be used to encapsulate text for which you want
the formatting preserved. Such text is generally space-formatted, columnar text, but is not limited
to that type of text.

Note that the preformatted tag also causes the encapsulated text to be rendered in a monospace
font to ensure that the character spacing does not change. The following code demonstrates
an example of how preformatted tags can be used, and Figure 5-7 shows the results in a
browser:

<pre>
+----+---------------------+---------+
| id | dtime | counter |
+----+---------------------+---------+
| 1 | 2005-09-13 04:18:02 | 1335 |
| 2 | 2005-09-13 04:18:02 | 85355 |
| 1 | 2005-09-13 04:23:02 | 1043 |
| 2 | 2005-09-13 04:23:02 | 127885 |
| 1 | 2005-09-13 04:45:59 | 1189 |
| 2 | 2005-09-13 04:45:59 | 29529 |
| 1 | 2005-09-13 04:50:59 | 1189 |
| 2 | 2005-09-13 04:50:59 | 9641 |
| 1 | 2005-09-13 04:55:59 | 1189 |
| 2 | 2005-09-13 04:55:59 | 23374 |
+----+---------------------+---------+
</pre>

58

Chapter 5: Text Structuring Essentials

FIGURE 5-7

Preformatted tags enable you to include sections of text that the browser will not reformat.

Summary
At this point in the book you should have a good understanding of how to construct an HTML
standards-compliant document and format paragraphs of text within it. The next few chapters
delve into specific character and special object formatting to give you fine control over your doc-
uments, make them look their best, and keep them standards compliant.

The next chapter dives into character formatting, showing you how to achieve a finer grain of
formatting control over your text. This part then continues to cover other HTML formatting
controls including lists (Chapter 7), links to other documents (Chapter 8), tables (Chapter 9),
and frames (Chapter 10). By the end of this part, you should have a good understanding of
the HTML elements at your disposal and the appropriate parts of a document on which to
use them.

59

Character Formatting
Essentials

IN THIS CHAPTER
Methods of Text Control

Bold and Italic Text

Use of Emphasis Instead of
Italics

Monospace (Typewriter) Fonts

Superscripts and Subscripts

Abbreviations

Marking Editorial Insertions
and Deletions

Grouping Inline Elements with
the Span Tag

A lthough the modern-day Web is a haven of multimedia, text is still
vitally important. Only through text can some messages be succinctly
communicated. Even then, diversity in text can help further clarify a

message. For example, emphasizing one word with bold or italic font can
change the entire tone and meaning of a sentence.

This chapter discusses the tags you can use to format elements inside of
block elements (characters, words, or sentences inside of paragraphs).

Methods of Text Control
You can control the look and formatting of text in your documents
using various means. It should come as no surprise that the more direct
methods — tags and the like — have been deprecated in favor
of CSS controls in HTML 4.01 and XHTML. For historical context and
completeness, the following sections cover the various means possible.

Tip
Although it is sometimes easier to drop a direct formatting tag into text, resist
the urge and use styles instead. Your documents will be more flexible and
more standards-compliant. �

The tag
The tag enables you to directly affect the size and color of text.
Intuitively, the size attribute is used to change the text’s size; the color
attribute is used to change the color. The size of the text is specified by a
number, from 1 to 7, or by a signed number (also 1 to 7). In the latter

61

Part I: Creating Content with HTML

case, the size change is relative to the size set by the <basefont> tag. The <basefont> tag has
one attribute, size, which can be set to a number, 1 through 7.

Note
Default font type and size is left up to the user agent. No standard correlation exists between the size
used in a tag and the actual font size used by the user agent. As such, the default size of the
font (1 to 7) can vary considerably between user agents. �

For example, if you wanted larger text in a red color, you could use a tag similar to the
following:

this is larger, red text

Note that using ‘‘+3’’ for the size increases the text within the tag by a factor of 3 from the base
font size.

The tag is one of the HTML tags that have been deprecated in favor of styles. If you
need to change the size of some of the text within a block element, use a tag and styles
instead. (The tag is covered later in this chapter.)

Emphasis and other text tags
You can use a handful of tags to emphasize portions of text. Although these tags have not been
deprecated in HTML 4.01, it is strongly recommended that you make use of CSS instead, as CSS
provides better control and flexibility, and the ability to cache formatting in style sheets for reuse.

Table 6-1 lists the emphasis tags and each one’s use. A sample of their use is shown in
Figure 6-1.

Because support for tags is somewhat haphazard, it is not standard across user agents — for
example, you may not be able to tell the difference between text coded with <cite> or .

CSS text control
CSS provides several different properties to control text. Table 6-2 lists some of the more popular
properties.

As you can see, CSS offers a bit more control over your text, enabling you to specify actual fonts and
font sizes. However, the advantage to using CSS properties over hard-coded tags is not found in the
list of available properties, but in the flexibility in formatting and affecting later changes — culled
from the concept of keeping structure (HTML) and presentation (CSS) separate.

For example, suppose you were creating documentation for a programming language and wanted
to format all reserved words a particular way — perhaps in a slightly larger, red, bold font. With
tags, the code would resemble the following:

<p>The date
function can be used to ...

62

Chapter 6: Character Formatting Essentials

FIGURE 6-1

The different types of tags emphasizing text are rendered here.

Later, you might decide that the red color is too much emphasis, and larger, bold text is enough.
You must then change every tag used around reserved words, as follows, removing the
color attribute:

<p>The date
function can be used to ...

Suppose, instead, that you used CSS, as shown in the following code:

<head>
<style type="text/css">

.reservedword { font: 14pt bold; color: red }
</style>

</head>
<body>
<p>The date function can be
used to...

If you later decided to change the formatting of reserved words, you would have to make only
one change to the style definition at the top of the document. That one change would result in
changing all instances of the style within the document.

63

Part I: Creating Content with HTML

TABLE 6-1

Emphasis Tags

Tag Use

<abbr> Abbreviation

<acronym> Acronym

<cite> Citation

<code> Code text

<dfn> Definition term

 Emphasized text

<kbd> Keyboard text

<samp> Sample text

 Strongly emphasized text

<var> Variable(s)

TABLE 6-2

CSS Text Properties

Property Values Use

color color value Change the color of text.

font font-style font-variant
font-weight font-size
line-height font-family

Shortcut property for setting
font style, variant, weight,
size, line height, and font
family.

font-family family name value Set the font family (face).

font-size font size value Set the font size.

font-style normal | italic | oblique Set font to italic.

font-variant normal | small-caps Set small caps.

font-weight normal | bold | bolder |
lighter

Set font to bold.

text-decoration none | underline | overline |
line-through | blink

Set under/overlining.

text-transform none | capitalize | uppercase |
lowercase

Transform font
capitalization.

64

Chapter 6: Character Formatting Essentials

Tip
If you used an external style sheet, that one change outlined in the preceding explanation could result in
changing an unlimited number of documents that use the sheet. �

Bold and Italic Text
Two well-known text emphasis tags that survive in HTML are bold and italic. As used in the
following code example, their effect on text is shown in Figure 6-2:

<p>This is normal text.</p>
<p>This is bold text.</p>
<p><i>This is italic text.</i></p>

Note
Not every font has a bold and/or italic variant. When possible, the user agent will substitute a similar
font when bold or italic is requested but not available. However, not all user agents are font-savvy. Your
mileage with these tags may vary depending on the user agent being used, and the system on which it is
being used. �

FIGURE 6-2

Bold and italic tags at work

65

Part I: Creating Content with HTML

For the same reasons mentioned elsewhere, it is advisable to use CSS instead of hard-coded bold
and italic tags.

Use of Emphasis Instead of Italics
There is some common wisdom among Web developers that the emphasis tag () should
be used instead of the italic tag (<i>). The rationale behind this opinion is that the italic tag
should be used to emphasize text, not necessarily to italicize it (which has the notable side effect
of emphasizing the very text it italicizes).

Note
Although bold and italic tags have survived deprecation in HTML, their use is still discouraged in favor of
CSS alternatives, for all the usual reasons highlighted throughout this chapter. �

The one problem with specifying that text be italicized is that not all fonts have an italic
variant. Some non-font-savvy user agents may choose to ignore the italic tag, rendering the
text as normal, non-italicized, non-emphasized text. The emphasis tag, however, instructs
the user agent to use its preferred method of emphasizing the coded text — italic, special
symbols, a special font, bold characters, and so on. Regardless of the user agent, you can almost
always rely upon text coded with the emphasis tag to appear differently than text not coded
as such.

The bottom line: Use the emphasis tag when your goal is simply to have the coded text
emphasized, regardless of how it is displayed by the user agent. Use the italic tag when
you need the text to show up unconditionally as italic — if the user agent can render it
as such.

Monospace (Typewriter) Fonts
Another text formatting tag that has thus far survived deprecation is the teletype tag (<tt>).
This tag is named for the teletype terminals used with the first computers, which were capable
of printing only in a monospaced font. This tag tells the user agent that certain text should be
rendered in a monospaced font. Suggested uses for this tag include reserved words in docu-
mentation, code listings, and so on. The following code shows an example of the teletype tag
in use:

<p>Consider using the <tt>date</tt> function instead.</p>

Tip
Again, the use of styles is preferred over individual inline tags. If you need text rendered in a monospace
font, consider directly specifying the font parameters using styles instead of relying upon the <tt> tag. �

66

Chapter 6: Character Formatting Essentials

Superscripts and Subscripts
There are two tags, <sup> and <sub>, for formatting text in superscript and subscript,
respectively. The following code shows an example of each tag, the output of which is shown in
Figure 6-3:

<p>This is normal text.</p>
<p>This is the 16th day of the month.</p>
<p>Water tanks are clearly marked as H₂O.</p>

FIGURE 6-3

Examples of superscript and subscript

Abbreviations
You can use the abbreviation tag (<abbr>) to mark abbreviations, and, optionally, when using
the title attribute, give readers the expansion of the abbreviation used. For example, you could
use this tag with acronyms such as HTML:

<abbr title="Hypertext Markup Language">HTML</abbr>

67

Part I: Creating Content with HTML

Note that the expansion of the abbreviation is placed in the <abbr> tag’s title attribute. Some
user agents will display the value of the title attribute when the mouse/pointer is over the
abbreviation, as previously shown in Figure 6-1. Other user agents may totally disregard the tag
and its expansion title attribute.

The acronym tag (<acronym>) is very similar to the abbreviation tag but is used for acronyms.
It, too, supports a title attribute for optionally supplying the expansion of the acronym.

Marking Editorial Insertions and Deletions
To further strengthen the bond between HTML documents and printed material, the insert
(<ins>) and delete () tags have been added to HTML. Both tags are used for redlining
documents — that is, creating a visually marked-up document showing changes made to the
document.

For example, the following code has been marked up with text to be inserted (underlined) and
deleted (strikethrough). The output of this code is shown in Figure 6-4.

<p>Peter are<ins>is</ins> correct, the proposal from Acme
is lacking a few minor details.</p>

Note
The underline tag (<u>) has been deprecated in favor of the insert tag (<ins>), and the strikethrough tag
(<strike>) has been deprecated in favor of the delete tag (). �

Grouping Inline Elements with the
Span Tag
When using CSS for text formatting, you need a method to code text with the appropriate styles.
If you are coding block elements, you can use the <div> tag to delimit the block, but with
smaller chunks (inline elements) you should use .

The tag is used like any other inline tag (, <i>, <tt>, and so on), surrounding the
text/elements that it should affect. However, the tag itself does not directly affect the
text it encapsulates. You must use the style or class attribute to define what style(s) should
be applied. For example, both of the following code paragraph samples would render the word
red in a red-colored font:

<head>
<style type="text/css">
.redtext { color: red; }

</style>
</head>

68

Chapter 6: Character Formatting Essentials

<body>
<!-- Paragraph 1, using direct style coding -->
<p>We should paint the document
red.</p>
<!-- Paragraph 2, using a style class -->
<p>We should paint the document
red.</p>
</body>

FIGURE 6-4

The ins and del tags can provide for suitable redlined documents.

Of the two methods, using the class attribute is preferred over using the style attribute
because class avoids directly (and individually) coding the text. Instead, it references a separate
style definition that can be repurposed with other text.

Note
Throughout this chapter, I have advocated using styles in lieu of direct formatting using inline tags. The
 tag is the vehicle you should use to accomplish that feat. For example, instead of coding individual
instances of bold, italic text () throughout a document, create a style class using font-weight
and font-style attributes and code each instance with a tag that specifies that class. �

69

Part I: Creating Content with HTML

Summary
This chapter covered the formatting of text using inline tags. You learned two distinct methods
(direct tags and styles) and the various tags to supplement textual formatting. Keep in mind that
you should use <div> or other block tags to format larger sections of a document.

The following chapters (7 through 11) introduce you to larger formatting elements such as lists,
tables, frames, and forms, and explain how to link documents to one another. All of this infor-
mation gives you more formatting options for the text and character formatting techniques you
have already learned.

70

Lists

IN THIS CHAPTER
Understanding Lists

Ordered (Numbered) Lists

Unordered (Bulleted) Lists

Definition Lists

Nested Lists

HTML and its various derivatives were originally intended to repro-
duce academic and research text. For this reason, particular care
was taken to ensure that specific elements, such as lists and tables,

were implemented and robust enough to handle the tasks for which they
serve.

In the case of lists, HTML defines three different types of lists: ordered lists
(numbered), unordered lists (bulleted), and definition lists (term and definition
pairs). This chapter covers all three types of lists and the various syntax and
formatting possibilities of each.

Understanding Lists
All lists, whether ordered, unordered, or definition, share similar elements.
Each HTML list has the following structure:

<list_tag>
<item_tag>Item text</item_tag>
<item_tag>Item text</item_tag>
...

</list_tag>

Note
Definition lists are slightly different in syntax because they use a term tag
(<dt>) and a definition description tag (<dd>). See the ‘‘Definition Lists’’
section later in this chapter for more information. �

For each list, you need the list opening tag, a corresponding closing tag, and
individual item tags for each element actually in the list. Essentially,

71

Part I: Creating Content with HTML

the entire list must be delimited by list open and close tags, with list items appearing between
the two tags with open and close tags of their own. This structure will become abundantly clear
throughout the chapter.

Each type of list has its own display format:

� An ordered list precedes its items with a number or letter.

� An unordered list precedes its items with a bullet (as in this list).

� A definition list has two pieces for each item: a term and a definition.

The ordered and unordered lists have many different display options available:

� Ordered lists can have their items preceded by the following:

� Arabic numbers

� Roman numerals (uppercase or lowercase)

� Letters (uppercase or lowercase)

� Numerous other language-specific numbers/letters

� Unordered lists can have their items preceded by the following:

� Several styles of bullets (filled circle, open circle, square, and so on)

� Images

More information on the individual list types is provided in the following sections.

Ordered (Numbered) Lists
Ordered lists have elements that are preceded by numbers or letters. They are meant to provide
a sequence of ordered steps for an activity. For example, this book uses numbered lists when
stepping you through a process. Such a list might resemble the following:

1. Press and hold the reset button until the power light blinks rapidly.

2. Release the reset button.

3. Wait until the power light returns to a steady state.

Ordered lists use the ordered list tag () to delimit the entire list, and the list item tag ()
to delimit each individual list item.

In the preceding example, the list has three elements numbered with Arabic numbers. This is
the default for ordered lists in HTML, as shown in the following code, whose output is shown in
Figure 7-1:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>

72

Chapter 7: Lists

<head>
<title>Example Ordered List</title>

</head>
<body>
<p>

 Press and hold the reset button until the power light blinks

rapidly.
 Release the reset button.
 Wait until the power light returns to a steady state.

</p>
</body>
</html>

FIGURE 7-1

The default ordered list uses Arabic numbers for its items.

To specify a different type of identifier for each item, you use the list-style-type attribute
and define a style for the list, as shown in the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>

73

Part I: Creating Content with HTML

<head>
<title>Example Ordered List - Letters</title>

</head>
<body>
<p>
<ol style="list-style-type: upper-alpha">
 Press and hold the reset button until the power light blinks

rapidly.
 Release the reset button.
 Wait until the power light returns to a steady state.

</p>
</body>
</html>

Cross-Ref
Style properties for lists are covered in Chapter 31. �

This code results in the list items being prefaced with uppercase letters, as shown in Figure 7-2.

FIGURE 7-2

The upper-alpha value of the list-style-type attribute causes the ordered list elements to be prefaced
with uppercase letters.

74

Chapter 7: Lists

Note
Using letters or Roman numerals only makes sense for organizational lists (outlines, and so on), not for lists
that outline a series of steps that must be followed in order. �

The list-style-type property supports the following values in CSS2:

� decimal
� decimal-leading-zero
� lower-roman
� upper-roman
� lower-greek
� lower-alpha
� lower-latin
� upper-alpha
� upper-latin

� Hebrew
� Armenian
� Georgian
� cjk-ideographic
� hiragana
� katakana
� hiragana-iroha
� katakana-iroha
� none

Note
Some of the values for list-style-type are font-dependent, meaning they are supported on certain fonts
only. If you are using a type such as hiragana with a Latin-based font, you will not achieve the results you
intended. �

The values for list-style-type are self-explanatory. The default type is typically decimal,
but it can be defined by the individual user agent. Keep in mind that your document’s font and
language options must support the language character sets used by the list-style-type.

Ordered lists also support the list-style-position property. This property controls where
the number or character preceding each item appears. The property has two possible values:

� outside — The number or character appears outside the left margin of the item text.
� inside — The number or character appears inside the left margin of the item text.

The default is outside, and the difference between the two options is shown in Figure 7-3.

Tip
The various list properties can all be defined within one property, list-style. The list-style property
has the following syntax:

list-style: <list-style-type> <list-style-image>
<list-style-position>

You can use this one property to specify one, two, or all three list-style properties in one declara-
tion. For example, to define an ordered list with lowercase letters and inside positioning, you could use the
following tag:

<ol style="list-style: lower-alpha inside;">

See Part III of this book for more information on styles. �

75

Part I: Creating Content with HTML

FIGURE 7-3

The list-style-position property controls where the list item numbers/characters appear — outside
or inside the list item margins.

Changing the Start Value of Ordered Lists

P revious versions of HTML allowed the use of the start attribute in the tag to control what
number or letter the list began with. For example, the following code starts a list with the decimal

number 12:

<ol start="12" style="list-style-type: decimal;">

However, the tag’s start attribute was deprecated and a replacement CSS equivalent has yet to
be defined. Although you can use the start attribute, your document will no longer validate against
strict HTML.

If you find yourself needing consistent yet flexible numbering, consider using the new CSS2 automatic
counters and numbering feature. This feature uses the content property along with the new
counter-increment and counter-reset properties to provide a fairly flexible automatic counter
function.

The following style code defines a counter and causes any list to begin with an item number
of 11:

76

Chapter 7: Lists

<style type="text/css">
ol.eleven { counter-reset: list 10; }
li { list-style-type: none; }
li:before {

content: counter(list,decimal) ". ";
counter-increment: list; }

</style>

This code introduces quite a few CSS2 concepts: pseudo-elements, counters, and related properties and
methods. However, it isn’t as complex as it might first appear:

� The ol definition causes the counter (list) to be reset to 10 every time the tag is
used — that is, at the beginning of every ordered list with a class of eleven.

� The li definition sets the list style type to none — the counter will display our num-
ber; if we left the list-style-type set to decimal, there would be an additional
number with each item courtesy of the tag itself.

� The li:before definition does two things: It causes the counter to be displayed
before the item (using the before pseudo-element and the content property) along
with a period and a space. It increments the counter. Note that the counter increment
happens first, before the display. That is why you need to reset the counter to one
lower than your desired start.

Using the preceding styles along with the following list code in a document results in a list with items
numbered 12–15:

<ol class="eleven">
Item 11
Item 12
Item 13
Item 14

Counters are a relatively new feature of CSS2. Unfortunately, at the time of this writing, few user agents
fully support counters. However, the other browsers are sure to follow suit at some point. Until then,
you might consider using JavaScript or another client/server scripting method to generate dynamic
numbers. You’ll find more information on counters and the content property in Chapter 35.

Unordered (Bulleted) Lists
Unordered lists are similar to numbered lists except that they use bullets instead of numbers
or letters before each list item. Bulleted lists are generally used when providing a list of
nonsequential items. For example, consider the following list:

� Action

� Role Playing

� Puzzle

� Adventure

77

Part I: Creating Content with HTML

Unordered lists use the unordered list tag () to delimit the entire list and the list item tag
() to delimit each individual list item.

In the preceding example, the list has four elements, each preceded by a small, round, filled
bullet. This is the default for unordered lists in HTML, as shown in the following code, whose
output is shown in Figure 7-4:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Example Unordered List</title>

</head>
<body>
<p>

Action
Role Playing
Puzzle
Adventure

</p>
</body>
</html>

Unordered lists also support the list-style-type property, but with slightly different values:

� disc
� circle
� square
� none

The default bullet type is disc, although the client browser can define the default differently.
The different bullet types are shown in Figure 7-5.

As with ordered lists, you can define the list-style-position property, which in the case of
unordered lists controls where the bullet appears — outside or inside the left margin of the item.
For example, to move the bullet inside the item’s margins, use a style with the tag, similar
to the following:

<ul style="list-style-position: inside;">

Unordered lists support one other type of bullet for each item, an image. An image for use in
unordered lists must fit the following criteria:

� Be accessible to the document via HTTP (be on the same Web server or accessible from
another Web source)

� Be in a suitable format for the Web (JPEG, GIF, or PNG)

� Be sized appropriately for use as a bullet

78

Chapter 7: Lists

FIGURE 7-4

Example of an unordered list

To specify an image for the list, use the list-style-image property. This property has the
following syntax:

list-style-image: url(url_to_image);

This property can be used to add more dimension to standard bullets (for example, creating
spheres to use instead of circles) or to use specialty bullets that match your content.

Of course, the graphics must be scaled to an appropriate ‘‘bullet’’ size and saved in a
Web-friendly format. In the following example, two images were reduced to 10–20 pixels
square and saved on the Web server as sphere.jpg and sight.jpg. The code uses the images
as bullets, and the output is shown in Figure 7-6:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Example Unordered List with Image Bullets</title>

</head>
<body>
<p>sphere</p>

79

Part I: Creating Content with HTML

<p>
<ul style="list-style-image: url(sphere.jpg);">
Action
Role Playing
Puzzle
Adventure

</p>
<p>sight</p>
<p>
<ul style="list-style-image: url(sight.jpg);">
Action
Role Playing
Puzzle
Adventure

</p>
</body>
</html>

FIGURE 7-5

Different bullet types for unordered lists

80

Chapter 7: Lists

Note
A few references state that the closing item tags () are not necessary in lists. Although most browsers
will render the list properly without them, your code will not validate against strict HTML unless you
include them. �

FIGURE 7-6

Using graphic images for bullets in unordered lists

Definition Lists
Definition lists are slightly more complex than the other two types of lists because they have two
elements for each item: a term and a definition. However, there aren’t many formatting options
for definition lists, so their implementation tends to be simpler than that of the other two lists.

Consider this list of definitions:

E for Everyone. Games rated E contain content suitable for anyone age 6 or older. Games may
contain minimal violence and language, typically in animated fashion.

T for Teen. Games rated T contain content suitable for anyone age 13 or older. Games rated T may
contain violence, suggestive content, crude humor, blood, and use of strong language.

M for Mature. Games rated M contain content suitable for anyone age 17 or older. Games rated M
may contain intense violence, blood, sexual content, and strong language.

81

Part I: Creating Content with HTML

FIGURE 7-7

Definition lists provide term and definition pairs for each list item.

The definition items can be coded as list terms and their definitions as list definitions, as shown
in the following code. The output of this code is shown in Figure 7-7.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Example Definition List</title>

</head>
<body>
<h1>ESRB Ratings for Video Games</h1>
<p>
<dl>
<dt>E for Everyone</dt>
<dd>Games rated E contain content suitable for anyone age 6

or older. Games may contain minimal violence and language,
typically in animated fashion.</dd>

<dt>T for Teen</dt>
<dd>Games rated T contain content suitable for anyone age 13

or older. Games rated T may contain violence, suggestive

82

Chapter 7: Lists

content, crude humor, blood, and use of strong
language.</dd>

<dt>M for Mature</dt>
<dd>Games rated M contain content suitable for anyone age 17

or older. Games rated M may contain intense violence,
blood, sexual content, and strong language.</dd>

</dl>
</p>
</body>
</html>

Note
To add clarity to your definition lists, construct styles that set the definition term in a different font or tex-
tual style. For example, you might want the definition terms to be red, bold, and italic. The following style
definition accomplishes this:

<style type="text/css">
dt { color: red; font-style: italic;

font-weight: bold }
</style> �

Nested Lists
You can nest lists of the same or different types. For example, suppose you have a bulleted list
and need a numbered list beneath one of the items, as shown:

� Send us a letter detailing the problem. Be sure to include the following:

1. Your name

2. Your order number

3. Your contact information

4. detailed description of the problem

In such a case, you would nest an ordered list inside an unordered one, as shown in the
following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Example Definition List</title>

</head>
<body>
<p>
<ul style="list-style-type: disc;">
Send us a letter detailing the problem. Be sure to

include the following:
<ol style="list-style-type: decimal;"> Your name.

Your order number.

83

Part I: Creating Content with HTML

Your contact information.
A detailed description of the problem.

</p>
</body>
</html>

The code’s output is shown in Figure 7-8.

FIGURE 7-8

You can nest different types of lists within one another.

Note that the nested list does not span any open or close tags — it starts after the close tag of
the parent’s item and before any other tags in the parent list. It is also formatted (indented)
to make it easier to identify in the code. Using this method, you can nest any list within any
other list.

84

Chapter 7: Lists

Summary
This chapter covered the ins and outs of the three different list types in HTML: numbered, bul-
leted, and definition. You learned how to define and format each type of list and how you can
nest lists for more flexibility.

From here, you should work through the rest of the HTML formatting essential chapters
(Chapters 8 through 12), covering links, tables, frames, forms, and more. This will help round
out your knowledge of how to format document elements using HTML. Furthermore, reading
the CSS basic chapters (Chapters 25 through 28) will give you the basics to apply to the specific
CSS concepts in Chapters 29 through 38.

85

Links

IN THIS CHAPTER
What’s in a Link?

Linking to a Web Page

Absolute versus Relative Links

Link Targets

Link Titles

Keyboard Shortcuts and Tab
Order

Creating an Anchor

Choosing Link Colors

Link Destination Details

The Link Tag

L inks are what make the World Wide Web weblike. One document
on the Web can link to several other documents, and those in turn
link to other documents, and so forth. The resulting structure, if dia-

grammed, resembles a web. The comparison has spawned many ‘‘web’’ terms
commonly used on the Internet; for example, electronic robots that scour the
Web are known as spiders.

Besides linking to other documents, you can link to just about any content
that can be delivered over the Internet — media files, e-mail addresses,
FTP sites, and so on.

This chapter covers the ins and outs of linking to references inside and out-
side the current document and how to provide more information about your
documents’ relationships to others on the Web.

What’s in a Link?
Web links have two basic components: the link and the target, or destination.

� The link is the tag in the main document (source) that refers to
another document.

� The target, or destination, is the document (or particular location in
the document) to which the link leads.

For example, suppose the Acme Games website reviews video games, and the
site posts an extremely positive review of a game by On Target Games. Acme
could put a link in the review on its site, leading to the game’s product
page on On Target’s site. Such an arrangement would resemble the diagram
shown in Figure 8-1.

87

Part I: Creating Content with HTML

FIGURE 8-1

The relationship of documents on the Web via links — the user clicks the link in the review
document to reach the specified page on the On Target Games website.

Link to On Target
Games Site

Vanguard Odyssey
Review

Vanguard Odyssey
Product Page

Acme Games
Review Site

On Target Games
Website

Links have two components: a descriptor and a reference to the target. The target is a docu-
ment that can be delivered via the Internet. In the preceding example, the review might list the
manufacturer’s name as the descriptor, and the actual Web URL would be the reference. Both are
specified in the anchor tag (<a>), as follows:

descriptor

The target reference is specified via the href attribute, and the descriptor appears between the
start and end anchor tags. For example, a link to On Target Games would resemble the follow-
ing, if the domain for On Target is on-target-games.com:

On Target Games’ Website

If you don’t provide the name of a document in the link, the Web server (in this case,
on-target-games.com) will send the defined top-level document (known as an index
document). Typically, this document is named index.html or home.html. If such a document

88

Chapter 8: Links

doesn’t exist or one has not been defined for the server, the server will either display an index
page or send a ‘‘not found’’ error to the client’s user agent.

The text ‘‘On Target Games’ Website’’ would be highlighted in the document to indicate it is a
link. The default highlight for a link is a different color font and underlined — you will see how
to change the highlight later in this chapter.

Note
As mentioned in the introduction to this chapter, you can link to other things besides HTTP documents. All
you need is the URL of the item to which you wish to link and the protocol necessary to reach the item.
For example, if you wanted to link to a document on an FTP site, you could use an anchor tag similar to
the following:

Vanguard Demo �

Note that the protocol is specified (ftp: instead of http:) and the server name is
specified (ftp.on-target-games.com), as is the path and filename (demos and
vanguarddemo.zip). A similar method can be used to link to an e-mail address
(href="mailto:someone@on-target-games.com"). Clicking such a link will generally
spawn the user’s e-mail client, ready to send an e-mail to the address specified.

Note
The rest of this chapter concentrates on linking to HTML documents on the Web. However, all the concepts
addressed here apply when linking to other content types. �

Linking to a Web Page
The most popular link style on the Web is a link to another Web page or document. When
activated, such a link causes the target page to load in the user agent. Control is then transferred
to the target page — its scripts run, and so on.

To link to another page on the Internet, simply specify the target’s URL in the anchor tag.
Suppose you want to link to the products page of the On Target Games Website and the page is
named vanguard.html and resides in the products directory on the Web server. The href
parameter of the link would be as follows:

http://www.on-target-games.com/products/vanguard.html

Note that the URL contains the protocol, the server name, the directory name, and the filename.
Figure 8-2 shows a breakdown of the various pieces of the URL.

89

Part I: Creating Content with HTML

FIGURE 8-2

The various pieces of a URL

Protocol Domain

Machine
name

Directory(ies)

Filename

http://www.on-target-games.com/products/vanguard.html

In the case of this URL, the various pieces are separated by various key characters:

� The protocol is first, and ends with a colon (http:).

� The server name is next, prefaced with a double slash (//www.on-target-games.com).

� The directory (or directories) comes next, separated with slashes (/products/).

� The page’s filename is last, separated from the preceding directory by a slash
(/vanguard.html).

Note
The server name is actually two pieces: the server’s name and the domain on which it resides. In
www.on-target-games.com, www is the server name and on-target-games.com is the domain. There
is a common misconception that all Web server names need to begin with www. Although www is a standard
name for a Web server, the name can be almost anything. For example, the U.S.-based Web server for the
Internet Movie Database (imdb.com) is us.imdb.com. �

Absolute versus Relative Links
There are two types of URL styles, and therefore two link types that you need to understand:
absolute links and relative links. You have seen absolute links, where the URL used in the link
provides the full path, including the protocol and full server address. These links are called abso-
lute links because the URL itself is absolute — that is, it does not change no matter where the
document in which it appears is kept.

The other type of link, a relative link, does not provide all of the details to the referenced page;
hence, its address is treated as relative to the document where the link appears. Relative links are
useful only for linking to other pages on the same website because any reference off of the same
site requires the remote server’s name.

Suppose you are the Webmaster of a company website on the Internet. You have several pages
on the site, including the home page, a main products page, and hardware and software products
pages. The home page is in the root directory of the server, while the product pages (all three)
are in a products directory. The relative links back and forth between the pages are shown in
Figures 8-3 and 8-4.

90

Chapter 8: Links

FIGURE 8-3

Relative links to subpages

Products

Home Root Directory (/)

./hardware.html

Hardware

./software.html

Software

Products
Directory

(/products)

/products/products.html

FIGURE 8-4

Relative links to parent pages

Products

Home Root Directory (/)

../products.html ../products.html

Hardware Software

Products
Directory

(/products)

../home.html

Note that you can use directory shortcuts to specify where the pages are:

� Starting a directory with a slash (/) references it in a subdirectory of the root directory.

� Starting a directory with a period and a slash (./) references it in a subdirectory of the
current directory (the directory where the current page resides).

� Starting a directory with a double period and a slash (../) references it in a parent direc-
tory to the current directory.

91

Part I: Creating Content with HTML

Relative links are easier to maintain on sections of websites where the pages in that section never
change in relationship to one another. For example, in the case of the site shown in Figures 8-3
and 8-4, if the products pages move as a whole unit to another place on the site, the relative
links between the product pages won’t change. If the links were coded as absolute (for example,
http://www.domain-name/products/hardware.html), they would all have to change.

Link Targets
Normally, links open the page they refer to in the active user agent window, replacing the page
currently displayed. However, you can control where the page opens using the target attribute
in the anchor tag.

Note
The target attribute has been deprecated in strict HTML because it directs the destination of a link to be
opened in a specific frame target. Because frames have been deprecated in the strict version of HTML 4.01,
so has the target attribute. It appears here because most user agents still support the attribute and it can
be useful. However, keep in mind that using this attribute means your documents will not validate against
strict HTML. �

The target attribute supports the values shown in Table 8-1.

TABLE 8-1

Target Attribute Values

Value Description

_blank Opens the linked document in a new window.

_self Opens the linked document in the same frame as the link.

_parent Opens the linked document in the parent frameset.

_top Opens the linked document in the main window, replacing any and all frames present.

name Opens the linked document in the window with the specified name.

Cross-Ref
Frames are covered in Chapter 10. �

For example, to open a linked document in a new window, rather than replace the contents of
the current window with the linked document, you would use a tag similar to the following:

Monthly Drawing (new window)

92

Chapter 8: Links

Caution
The debate about whether you should ever open a new window is fierce. Most users are accustomed to
all new windows being of the pop-up ad variety — and very unwelcome. However, from a user interface
standpoint, new windows can be utilized very effectively if they are used like dialog boxes or new windows
that an operating system spawns. In any case, you should form a habit of informing users when you are
going to open a new window so you don’t surprise them. �

The last value listed for target, name, can also aid in the user interface experience, if used
correctly. Certain methods of opening windows (such as the JavaScript window.open method)
enable you to give a window a unique name. You can then use that name to push a linked
document into that window. For example, the following code displays two links; the first
opens a new, empty user agent window named NEWS, and the second pushes the content at
www.yahoo.com into the window:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<script type="text/javascript">
function NewsWindow(){
var fin=window.open("","NEWS","width=400,height=400");

}
</script>
</head>
<body>
<p>Open a Blank Window</p>
<p>Fill Window with
Yahoo Content</p>
</body>
</html>

Cross-Ref
For more information on JavaScript, refer to Chapter 16. �

Link Titles
You can also title a link using the title attribute in the anchor tag. This causes most current
user agents to display the title text as a tooltip when the mouse hovers over it. For example, the
following link will cause Internet Explorer to display ‘‘Read the review at On Target Games,’’ as
shown in Figure 8-5:

Read what others think of our game <a
href="http://www.on-target-games.com/reviews/vanguard.com"
title="Read the review at On Target Games">here.

You can use this feature to give users more information about a link before they click it.

93

Part I: Creating Content with HTML

FIGURE 8-5

The title attribute causes a tooltip display when the mouse hovers over the link.

Keyboard Shortcuts and Tab Order
In the modern world of computers it is easy to make assumptions about users, their hardware,
and capabilities. Several years ago, no one would have dreamt of delivering rich, multimedia
content over the Web. Today, however, it is often assumed that everyone is using the latest user
agent, on a high-end computer, across a broadband connection.

That isn’t always the case. In fact, some users who visit your site may not even have a mouse
to aid in browsing. The reason could be a physical handicap, a text-only agent, or just a fond-
ness for using the keyboard. You can accommodate these users by adding additional methods to
access links on your page.

Keyboard shortcuts
Each link can be assigned a shortcut key for easy keyboard-only access using the accesskey
attribute with the anchor tag. The accesskey attribute takes one letter as its value: the letter
that can be used to access the link. For example, the following link defines ‘‘R’’ as the access key:

94

Chapter 8: Links

<a href="http://www.on-target-games.com/reviews"
accesskey="R">Reviews

Note that different user agents and different operating systems handle access keys differently.
Some user agent and operating system combinations require special keys to be pressed with the
defined access key. For example, Windows users on Internet Explorer must hold the Alt key
down while they press the access key. Note also that different user agents handle the actual
access of the link differently. Some user agents will activate the link as soon as the access key
is pressed, while others only select the link, requiring another key to be pressed to actually
activate it.

Tip
Keyboard shortcuts won’t help your users if you don’t give them a clue as to what the shortcut is. In the
example earlier in this section, the defined shortcut key (‘‘R’’) was used in the link text and highlighted
using the bold font attribute. �

Tab order
Defining a tab order for the links in your document will also help your users. As with most
graphical operating systems, the Tab key can be used to move through interface elements,
including links. Typically, the default tab order is the same as the order in which the links
appear in the document. However, on occasion, you might wish to change the order using the
tabindex attribute. The tabindex attribute takes an integer as its value, and that integer is
used to define the tab sequence in the document. For example, the following code switches the
tab order of the second and third links in a document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Tab Ordered Document</title>
</head>
<body>
<p>This is the <a href="http://www.example.com"

tabindex="1">first link.</p>
<p>This is the <a href="http://www.example.com"

tabindex="3">second link.</p>
<p>This is the <a href="http://www.example.com"

tabindex="2">third link.</p>
</body>
</html>

Note
As with most interface elements in HTML, the user agent defines how tabindex is implemented and how
tabbed elements are accessed. �

95

Part I: Creating Content with HTML

Creating an Anchor
Anchor tags have another use; they can be a marker in the current document to provide a book-
mark that can be directly linked to. For example, a large document might have several sections.
You can place links at the top of the document (or in a special navigation frame) to each section,
enabling the user to easily access each section.

To create an anchor in a document, use the anchor tag with the name attribute. For example, the
following code creates an introduction anchor at the ‘‘Introduction’’ heading:

<h1>Introduction</h1>

To link to the anchor you use a standard link, but add the anchor name to the end of the
URL in the link. To identify the name as an anchor, separate it from the rest of the URL with
a pound sign (#). For example, suppose the introduction anchor appears in the document
vanguard.html. To link to the introduction anchor, you could use the following code:

Introduction

Note
Because the URL in the link tag can contain the server and document names as well as the anchor name,
you can link to anchors in the same document or any accessible document. If you are linking to an anchor
in the same document, you can use an abbreviated form of the URL that includes only the pound sign and
the anchor name. �

In addition to using the anchor tag for bookmarks, you can link to a block element’s id
attribute. For example, if the Introduction appears inside an <h1> tag, you can set the <h1>
tag’s id attribute to introduction and omit the anchor link altogether, as shown in the
following example:

<h1 id="introduction">Introduction</h1>

Choosing Link Colors
Links should stand out from the rest of the content in your documents. They need to be easily
recognizable by users. Each link has four different status modes:

� Link — The standard link in the document. It is neither active nor visited (see other
modes).

� Active — The link’s target is active in another window.

� Visited — The link’s target has been previously visited (typically, this means the target can
be found in the user agent’s cache).

� Hover — The mouse pointer is over the link.

96

Chapter 8: Links

Each of these modes should be colored differently so that users can tell the status of each link on
your page. The usual colors of each link status are as follows:

� Link — Blue, underlined text

� Active — Red, underlined text

� Visited — Purple, underlined text

� Hover — No change in the appearance of the link (remains blue, red, or purple)

Note
As with other presentation attributes in HTML, the user agent plays a significant role in setting link colors
and text decorations. Most agents follow the color scheme outlined in this section, but some agents don’t
conform to this scheme. �

To change the text color and other link attributes, you can modify the properties of each type of
anchor tag. For example, the following style, when used in an HTML document, sets the default
visited link text to bold and yellow:

a:visited { color: yellow; font-weight: bold; }

Tip
Setting the anchor tag properties without specifying a mode changes all of the link modes to the character-
istics of the style. For example, the following style sets all links (link, active, visited) to red:

a { color: red; }�

Why would you want to change the color of links in your document? One reason would be that
the normal text in your document is the same color as the default link. For example, if your
document’s text is blue, you probably want to change the default color of existing links from
blue to another color to enable users to easily recognize them.

Make a habit of defining all of the link attributes instead of haphazardly defining only one or two
of the link status colors. The following styles define each type of link, ensuring that they appear
how you want in the document:

a:link { color: #003366;
font-family:verdana, palatino, arial, sans-serif;
font-size:10pt; text-decoration: underline; }

a:visited {color: #D53D45;
font-family:verdana, palatino, arial, sans-serif;
font-size:10pt; text-decoration: underline; }

a:active {color: #D53D00;
font-family:verdana, palatino, arial, sans-serif;
font-size:10pt; font-weight: bold;
text-decoration: underline; }

97

Part I: Creating Content with HTML

a:hover {color: #D53D45;
font-family:verdana, palatino, arial, sans-serif;
font-size:10pt; text-decoration: none; }

Note the redundancy in the styles — there are only subtle changes in each. You should strive to
eliminate such redundancy whenever possible, relying instead upon the cascade effect of styles.
You could effectively shorten each style by defining the anchor tag’s attributes by itself, and
defining only the attributes that are different for each variant:

a { color: #003366;
font-family:verdana, palatino, arial, sans-serif;
font-size:10pt; text-decoration: underline; }
a:visited {color: #D53D45; }
a:active {color: #D53D00; font-weight: bold; }
a:hover {color: #D53D45; text-decoration: none; }

Link Destination Details
You can add a host of other attributes to your anchor tags to describe the form of the destination
being linked to, the relationship between the current document and the destination, and more.

Table 8-2 lists these descriptive attributes and their possible values.

TABLE 8-2

Link Destination Details

Attribute Meaning Value(s)

charset The character encoding of
the target

For example, charset="ISO 8859-1"

hreflang The base language of the
target

For example, hreflang="en-US"

rel The relationship between
the current document
and the destination

alternate stylesheet start next prev
contents index glossary copyright
chapter section subsection appendix
help bookmark

rev The relationship between
the destination and the
current document

alternate stylesheet start next prev
contents index glossary copyright
chapter section subsection appendix
help bookmark

type The MIME type of the
destination

Any valid MIME type

98

Chapter 8: Links

The following code snippet demonstrates how the relationship attributes (rel, rev) can be used:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Chapter 10</title>
</head>
<body>
<p>Table of
Contents</p>
<p>Chapter 9</p>
<p>Chapter 11</p>
.......

Here, the anchor tags define the relationships between the chapters (next, previous) and the table
of contents (chapter, contents).

The Link Tag
You can use the link tag (<link>) to provide additional information about a document’s rela-
tionship to other documents, independently of whether the current document actually links to
other documents or not. The link tag supports the same attributes as the anchor tag, but with a
slightly different syntax:

� The link tag does not encapsulate any text.

� The link tag does not have an ending tag.

For example, the following code could be used in chapter10.html to define that document’s
relationship to chapter9.html and chapter11.html:

<link href="chapter9.html" rev="next" rel="prev" />
<link href="chapter11.html" rev="prev" rel="next" />

The link tag does not result in any visible text being rendered, but it can be used by user agents
to provide additional navigation or other user-interface tools.

Another important use of the link tag is to provide alternate content for search engines.
For example, the following link references a French version of the current document
(chapter10.html):

<link lang="fr" rel="alternate"hreflang="fr"
href="chapter10-fr.html" />

Other relationship attribute values (start, contents, and so on) can likewise be used to pro-
vide relevant information about document relationships to search engines.

99

Part I: Creating Content with HTML

Summary
This chapter covered links — what they are and how to use them to reference other content on
the Web. You learned how to construct a link and what attributes are available to the anchor
and link tags. You also learned how to define relationships between your document and other
documents, and why this is important.

From here, you should progress through the next few chapters, continuing to familiarize yourself
with the other various pieces of an HTML document, such as tables, frames, and forms (Chapters
9 through 11). This part of the book then covers colors and multimedia (Chapters 12 and 13),
and special characters and internationalization (Chapters 14 and 15), and wraps up with the
basics of coding in HTML.

100

Tables

IN THIS CHAPTER
Parts of an HTML Table

Table Width and Alignment

Cell Spacing and Padding

Borders and Rules

Rows

Cells

Table Captions

Row Groups — Header, Body,
and Footer

Background Colors

Spanning Columns and Rows

Grouping Columns

Formatting with Tables

Tables are a powerful HTML tool with many uses. Developed
originally to help communicate tabular data (usually scien-
tific or academic-based data), tables are now used for many

purposes — from simply holding tabular data to the layout of entire pages.
This chapter covers the basics of tables and then progresses into more
complex uses of this versatile HTML structure.

Parts of an HTML Table
An HTML table is made up of the following parts:

� Rows

� Columns

� Header cells

� Body cells

� Caption

� Header row(s)

� Body row(s)

� Footer row(s)

Figure 9-1 shows an example of an HTML table, with the various parts
labeled. The table is defined by the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

101

Part I: Creating Content with HTML

<title>An HTML Table</title>
</head>
<body>
<p>
<table border="1">
<caption>Table Caption</caption>
<thead>

<tr><td colspan="2">Table Header</td></tr>
</thead>
<tfoot>

<tr><td colspan="2">Table Footer</td></tr>
</tfoot>
<tbody>

<tr><th>Header Cell 1</th><th>Header Cell 2</th></tr>
<tr><td>Body Cell 1</td><td>Body Cell 2</td></tr>

</tbody>
</table>

</p>
</body>
</html>

FIGURE 9-1

HTML table elements

102

Chapter 9: Tables

Many parts of the HTML table are optional — you need only to delimit the table (with <table>
tags) and define rows (via <tr> tags) and columns (via <td> tags). For example, code for a table
with these minimum requirements would resemble the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>A Minimal HTML Table</title>

</head>
<body>
<p>
<table border="1">

<tr>
<td>Body Cell 1</td>
<td>Body Cell 2</td>

</tr>
</table>

</p>
</body>
</html>

Tip
It is possible to nest tables within one another. In fact, using tables for layout (covered later in this chapter)
depends on this capability. Tables must be nested within table cells (<td> tags). See the ‘‘Cells’’ section
later in this chapter for more information on the <td> tag. �

Table Width and Alignment
Typically, an HTML table expands to accommodate the contents of its cells. For example, con-
sider the following code and the resulting tables shown in Figure 9-2:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>HTML Table Widths</title>

</head>
<body>
<p>
Short Text Table

<table border="1">

<tr><td>Short Text 1</td><td>Short Text 2</td></tr>
</table>

</p>
<p>
Longer Text Table

103

Part I: Creating Content with HTML

<table border="1">
<tr><td>Longer Text 1</td><td>Longer Text 2</td></tr>

</table>
</p>
<p>
Mixed Text Table

<table border="1">

<tr><td>Short Text</td><td>Even Longer Text</td></tr>
</table>

</p>
</body>
</html>

FIGURE 9-2

HTML tables expand to accommodate their content.

Once a table expands to the limits of its container object — whether the browser window,
another table, or a sized frame — the contents of the cells will wrap, as shown in Figure 9-3.

Sometimes you will want to manually size a table, either to fill a larger space or to constrain
the table’s size. Using the width attribute in the table tag (<table>), you can set a table’s

104

Chapter 9: Tables

size by specifying the table width in absolute pixels or a percentage of the table’s containing
object.

FIGURE 9-3

Cell contents wrap if a table cannot expand any further.

For example, if you specify 50%, as in the following code snippet, the table’s width will be
50 percent of the containing object (which is the width of the browser), as shown in Figure 9-4:

<table border="1" width="50%">

Note
Besides specifying the width of the full table, you can also specify the width of each column within the table
using width attributes in the table header (<th>) and table cell (<td>) tags. These techniques are covered
in the ‘‘Cells’’ and ‘‘Grouping Columns’’ sections later in this chapter. �

Using a percentage width enables the table to size itself dynamically to the size of its
container. For example, if a table is set to 50%, the table will display as 50 percent of its
container — paragraph tag, division, or other block object. Note that if the container is not the

105

Part I: Creating Content with HTML

width of the user agent, then the scaled table width will not be proportional to the user agent
window, but rather the container.

FIGURE 9-4

The width of this table is set to occupy 50 percent of the available width of its containing
object — in this case, the user agent window.

If you need to specify the exact width of a table, you should specify the width of the table in
pixels instead. For example, if you need a table to be 400 pixels wide, you would specify the
table with the following tag:

<table width="400px">

Keep in mind that if the specified table width exceeds the width of its container object, the width
will be adjusted to the size of the container. An exception is containers that support horizontal
scroll bars; if the container supports scroll bars, then the table will be sized as instructed and the
container will spawn scroll bars to accommodate its full width, as shown in Figure 9-5.

Note
If the table’s specified width exceeds the container’s width and the container is not scroll bar–enabled,
it is up to the browser to handle the table. Most browsers will resize the table to fit the width of its
container. �

106

Chapter 9: Tables

FIGURE 9-5

Tables too wide for their environment can get some help from scroll bars.

Scrollbars

Cell Spacing and Padding
You can control two cell spacing options in your HTML tables: spacing and padding. Cell spacing
is the space between cells. Cell padding is the space between the cell border and its contents.
Figure 9-6 shows the relationship between the two and the cell data itself.

Cell spacing is controlled with the cellspacing attribute and can be specified in pixels or per-
centages. When specified by percentage, the browser uses half of the specified percentage for
each side of the cell.

Cell padding is controlled with the cellpadding attribute. As with cell spacing, you can specify
padding in pixels or a percentage.

Tip
Keep in mind that cell spacing and cell padding can have a drastic effect on the available size for cell
content. Increasing both spacing and padding decreases the cell content size. �

107

Part I: Creating Content with HTML

FIGURE 9-6

Cell padding and spacing

Cell padding

Cell spacing

Borders and Rules
The border around HTML tables and in between cells can be configured in many ways. The
following sections cover the various ways you can configure table borders and rules.

Table borders
You can use the border attribute of the table tag (<table>) to configure the outside border of
the table. For example, consider the following code containing three tables (the resulting output
is shown in Figure 9-7):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Table Outside Borders</title>

</head>
<body>
<p>

108

Chapter 9: Tables

No Borders

<table border="0">

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
</p>
<p>
Border = 1

<table border="1">

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
</p>
<p>
Border = 5

<table border="5">

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
</p>
</body>
</html>

FIGURE 9-7

Examples of table border widths

109

Part I: Creating Content with HTML

The border attribute’s value specifies the width of the border in pixels. The default border
width is 0, or no border.

Tip
Borders are an effective troubleshooting tool when dealing with table problems in HTML. If you are having
trouble determining what is causing a problem in a table, try turning on the borders to better visualize the
individual rows and columns. If you are using nested tables, turn on the borders of tables individually until
you narrow down the scope of the problem. �

To specify which outside borders are displayed, use the frame attribute with one of the values
displayed in Table 9-1.

Note
Not all user agents follow the defaults for table borders (no borders, or box/border when a border width
is specified). If you want a table to appear with particular formatting, take care to specify all appropriate
options, or use CSS to style the table elements. (Table-based CSS properties are covered in Chapter 30.) �

TABLE 9-1

frame Attribute Values

Value Definition

void Display no borders.

above Display a border on the top of the table only.

below Display a border on the bottom of the table only.

hsides Display borders on the horizontal sides (top and
bottom) only.

lhs or rhs Display only the left side or the right side border
only.

vsides Display borders on the vertical sides (right and left)
only.

box or border Display borders on all sides of the table (the default
when the border attribute is set without specifying
frame).

Table rules
You can use the table tag’s rules attribute to control what rules (borders between cells) are
displayed in a table. Table 9-2 shows the rules attribute’s possible values.

Note that the width of rules is governed by the table spacing attribute. For example, setting
cellspacing to a value of 5px results in rules five pixels wide.

110

Chapter 9: Tables

TABLE 9-2

rules Attribute Values

Value Definition

none Display no rules.

groups Display rules between row groups and column groups only.

rows Display rules between rows only.

cols Display rules between columns only.

all Rules will appear between all rows and columns.

Rows
Table rows are the horizontal elements of the table grid and are delimited with table row tags
(<tr>). For example, a table with five rows would use the following pseudocode:

<table>
<tr> row 1 </tr>
<tr> row 2 </tr>
<tr> row 3 </tr>
<tr> row 4 </tr>
<tr> row 5 </tr>

</table>

The rows are divided into individual cells by embedded <td> or <th> tags (see the next section,
‘‘Cells,’’ for more details).

Note
The table row ending tag (</tr>) is mandatory. �

The table row tag supports the attributes shown in Table 9-3.

For an example of how baseline vertical alignment differs from bottom alignment, consider the
two tables in Figure 9-8.

If you use the alignment attributes in a <tr> tag, that alignment will be applied to all cells in
that row. To format cell alignment individually, specify the alignment attribute(s) in individual
cell tags (<th> or <td>) or in <col> or <colgroup> tags.

Note
The bgcolor attribute, used to set the background color for the row, has been deprecated in HTML 4.01.
Instead of using this attribute, I recommend using applicable styles to accomplish the same effect. �

111

Part I: Creating Content with HTML

TABLE 9-3

Table Row Tag Attributes

Attribute Definition

align Set to right, left, center, justify, or char, this attribute
controls the horizontal alignment of data in the row. Note that if you
use char alignment, you should also specify the alignment character
with the char attribute described below.

char Specifies the alignment character to use with character (char)
alignment.

charoff Specifies the offset from the alignment character to align the data on.
Can be specified in pixels or percentage.

valign Set to top, middle, bottom, or baseline, this attribute controls
the vertical alignment of data in the row. Baseline vertical alignment
aligns the text baseline across the cells in the row.

FIGURE 9-8

Baseline alignment aligns the baseline of the text.

Bottom Alignment

Baseline Alignment

text

text

justify

justify

Cells
The individual cells of a table are the elements that actually hold data. In HTML, cell definitions
also define the columns for the table. You delimit cells/columns with table data tags (<td>).

For example, consider the following code:

<table border="1" cellpadding="5">
<tr>
<td>Column 1</td><td>Column 2</td><td>Column 3</td>

</tr>
<tr>
<td>Column 1</td><td>Column 2</td><td>Column 3</td>

112

Chapter 9: Tables

</tr>
</table>

Tip
Formatting your tables with ample white space (line breaks and indents) will help you accurately format
and understand your tables. There are just as many ways to format a table in HTML as there are Web
programmers — find a style that suits your taste and use it consistently. �

The preceding code defines a table with two rows and three columns, as evidenced by the three
sets of <td> tags.

You can also use table header tags (<th>) to define columns that are headers for the columns.
Expanding on the previous example, the following adds column headers:

<table border="1" cellpadding="5">
<tr>

<th>Header 1</th><th>Header 2</th><th>Header 3</th>
</tr>
<tr>

<td>Column 1</td><td>Column 2</td><td>Column 3</td>
</tr>
<tr>

<td>Column 1</td><td>Column 2</td><td>Column 3</td>
</tr>

</table>

Table header tags make it easy to format column headings without having to resort to charac-
ter formatting. For example, the preceding code results in most user agents rendering the table
header cells in a bold font (the default for <th>). To accomplish the same formatting without
header tags, you would need to include bold character formatting similar to the following:

<tr>
<td>Header 1</td>
<td>Header 2</td>
<td>Header 3</td>

</tr>

Using CSS, your formatting options with <th> are practically limitless; simply define appropriate
formatting or several formatting classes, as necessary.

Note
Most user agents will not properly render an empty cell (for example, <td></td>). When you find yourself
needing an empty cell, get in the habit of placing a nonbreaking space entity () in the cell (for example,
<td> </td>) to ensure that the user agent renders your table correctly. Technically, this ‘‘fix’’ should
not be necessary — setting the empty-cells style property to show should ensure that empty cells are
rendered as such. �

Although cells represent the smallest element in a table, surprisingly, they have the most
attributes for their tags. Supported attributes include those shown in Table 9-4.

113

Part I: Creating Content with HTML

TABLE 9-4

Cell Attributes

Attribute Definition

abbr An abbreviated form of the cell’s contents. User agents can use the
abbreviation where appropriate (indicating a short form of the contents,
displaying on a small device, and so on). As such, the value of the abbr
attribute should be as short and concise as possible.

align The horizontal alignment of the cell’s contents — left, center, right,
justify, or char (character).

axis Used to define a conceptual category for the cell, which can be used to
place the cell’s contents into dimensional space. How the categories are used
(if at all) is up to the individual user agent.

char The character used to align the cell’s content if the alignment is set to char.

charoff The offset from the alignment character to use when aligning the cell content
by character.

colspan How many columns the cell should span (default = 1). See the section
‘‘Spanning Columns and Rows’’ for more information.

headers A space-separated list of header cell id attributes that corresponds with the
cells used as headers for the current cell. User agents use this information at
their discretion — a verbal agent might read the contents of all header cells
before the current cell’s content.

rowspan How many rows the cell should span (default = 1). See the section
‘‘Spanning Columns and Rows’’ for more information.

scope The scope of the current cell’s contents when used as a header — row, col
(column), rowgroup, colgroup (column group). If set, the cell’s contents
are treated as a header for the corresponding element(s).

valign The vertical alignment of the cell’s contents — top, middle, bottom, or
baseline.

Note
Previous versions of HTML also supported a nowrap attribute to control whether a cell’s contents wrapped
or not. In HTML 4.01, this attribute has been deprecated in favor of styles. See Chapters 30 and 32 for
more information on styles pertaining to tables and table cells. �

Table Captions
Table captions (<caption>) provide an easy method to add descriptive text to a table. For
example, suppose you wanted to caption a table detailing the benefits of certain membership
levels. The following code adds an appropriate caption to a table whose output is shown in
Figure 9-9:

114

Chapter 9: Tables

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Table Captions</title>
</head>
<body>

<table width="400" border="1">
<caption>The Benefits of Membership</caption>
<tr>
<th>Service</th>
<th>Silver</th>
<th>Gold</th>

</tr>
<tr>
<td>Valet Parking</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>Manicure Guarantee</td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>
<td>Monthly Makeover</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>Hair Maintenance</td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>
<td>Massage Discount</td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>
<td>Monthly 30min Massage Included</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>Light Lunch During Stay</td>
<td> </td>
<td align="center">X</td>

</tr>

115

Part I: Creating Content with HTML

<tr>
<td>Unlimited Tranquility Room Use</td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>
<td>Unlimited Whirlpool Use</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>8 Hour Appointment Guarantee</td>
<td> </td>
<td align="center">X</td>

</tr>
</table>

</body>
</html>

FIGURE 9-9

The table caption, ‘‘The Benefits of Membership,’’ is placed above the table in this example.

116

Chapter 9: Tables

Note that the caption tag must appear immediately after the table tag. Captions typically appear
centered above the table to which they are attached, although different user agents may interpret
the caption differently.

Cross-Ref
You can use styles to format the caption however you like. For more information on styles, see Part III of
this book. �

Row Groups — Header, Body, and Footer
Simple tables have only one section, the body, which consists of rows and columns. However,
you might want to include additional information in your table by defining a table header and
footer to complement the information in the body.

For example, the header could contain the header rows, the body could contain the data, and the
footer could contain totals for each column. The advantage to breaking up the table into three
sections is that some user agents will then allow users to scroll the body of the table separately
from the header and footer.

Note
The HTML 4.01 specification dictates that you must use all three sections — header, body, and footer — if
you use any one section. You cannot use only a header section and body section without a footer section,
for example. If you don’t intend to use one of the elements, you must still include tags for the section, even
if the section is otherwise empty. �

The table header is delimited by <thead> tags — otherwise, its content is exactly like any other
table section, delimited by <tr>, <td>, and optionally <th> tags. For example, consider the
following table header section:

<thead>
<tr>

<th>Name</th>
<th>Hire Date</th>
<th>Title</th>

</tr>
</thead>

Other than being delimited by <tbody> tags, the table body is defined and formatted just like
any other table element. The table footer is delimited by <tfoot> tags and is formatted like the
other two sections.

Tip
Although it seems counterintuitive, you should place the <tfoot> section before the <tbody> section in
your code. This enables the user agent to correctly anticipate the footer section and appropriately format
the table body section. �

117

Part I: Creating Content with HTML

All three section tags support align and valign attributes for controlling text alignment within
the section for which it applies. (The char and charoff attributes are also supported for
align = "char".)

For an example of a table with all three sections, consider the following code and its output,
shown in Figure 9-10:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Loose Part Inventory</title>

</head>
<body>
<p>
<h3>Loose Part Inventory</h3>
<table border="1" cellpadding="10" cellspacing="2"

rules="groups">
<thead align="center">
<tr>
<th>Controllers</th><th>Power Cords</th><th>Video Cords</th>

</tr>
</thead>
<tfoot align="center">
<tr>
<td>Totals</td><td>51</td><td>13</td>

</tr>
</tfoot>
<tbody align="center">
<tr>
<td>Nintendo</td><td>10</td><td>0</td>

</tr>
<tr>
<td>Sony PS</td><td>12</td><td>4</td>

</tr>
<tr>
<td>XBOX</td><td>9</td><td>2</td>

</tr>
<tr>
<td>Misc</td><td>20</td><td>7</td>

</tr>
</tbody>
</table>
</p>
</body>
</html>

Note how the three sections are set off by rules, but the table is otherwise devoid of rules. This is
because of the rules = "groups" attribute in the table tag. Also note how alignment attributes
are used in the section tags to center the text in the table.

118

Chapter 9: Tables

FIGURE 9-10

The three table sections (header, body, footer) can be set off by custom rules.

Background Colors
In previous versions of HTML, you could use the bgcolor attribute in the <table> and
<tr>, <th>, and <td> tags to set a color background for the element. This attribute has been
deprecated in HTML 4.01 in favor of using styles to set the background color of table elements.

That said, if you must use the deprecated method, you can set the background of a header row
to green with code similar to the following:

<tr bgcolor="green">
<th>Controllers</th><th>Power Cords</th><th>Video Cords</th>

</tr>

If you were to use CSS to accomplish the same effect, the code would resemble the following
(output is shown in Figure 9-11):

<tr style="background-color: green;">
<th>Controllers</th><th>Power Cords</th><th>Video Cords</th>

</tr>

119

Part I: Creating Content with HTML

FIGURE 9-11

Use the background-color CSS property to control table element backgrounds.

However, not all user agents adequately support background colors in tables. Older browsers are
particularly finicky about correctly representing background colors. When in doubt, test.

Spanning Columns and Rows
It is possible to span data cells across multiple columns and rows using the colspan and
rowspan attributes. Usually such spanning is used to provide column or row headings for
groups of columns. For example, consider the following table code utilizing the colspan
attribute and the resulting output shown in Figure 9-12:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Spanning Columns</title>
</head>
<body>

<table width="400" border="1">

120

Chapter 9: Tables

<tr>
<td> </td>
<td colspan="2">Membership
Levels</td>
<!-- Above cell spans the two membership columns /-->

</tr>
<tr>
<th>Service</th>
<th>Silver</th>
<th>Gold</th>

</tr>
<tr>
<td>Valet Parking</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>Manicure Guarantee</td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>
<td>Monthly Makeover</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>Hair Maintenance </td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>
<td>Massage Discount </td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>
<td>Monthly 30min Massage Included</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>Light Lunch During Stay</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>Unlimited Tranquility Room Use </td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>

121

Part I: Creating Content with HTML

<td>Unlimited Whirlpool Use </td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>8 Hour Appointment Guarantee</td>
<td> </td>
<td align="center">X</td>

</tr>
</table>

</body>
</html>

FIGURE 9-12

You can span cells across columns.

You can span cell rows using the rowspan attribute in a similar fashion, as shown in the
following code and resulting output in Figure 9-13:

Note
Rows that include a previously spanned cell omit the declaration of their first cell. �

122

Chapter 9: Tables

FIGURE 9-13

Spanning rows with the rowspan attribute

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Spanning Rows</title>
</head>
<body>

<table width="400" border="1">
<colgroup>
<col></col>
<col span="2" style="text-align: center;"></col>

</colgroup>
<tr>
<th rowspan="11">Premium
Services</th>
<!-- Above cell spans 11 rows. Remaining rows omit

their first cell declaration. /-->
<th>Service</th>
<th>Silver</th>
<th>Gold</th>

</tr>

123

Part I: Creating Content with HTML

<tr>
<td>Valet Parking</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>Manicure Guarantee</td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>
<td>Monthly Makeover</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>Hair Maintenance</td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>
<td>Massage Discount</td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>
<td>Monthly 30min Massage Included</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>Light Lunch During Stay</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>Unlimited Tranquility Room Use</td>
<td align="center">X</td>
<td align="center">X</td>

</tr>
<tr>
<td>Unlimited Whirlpool Use</td>
<td> </td>
<td align="center">X</td>

</tr>
<tr>
<td>8 Hour Appointment Guarantee</td>
<td> </td>
<td align="center">X</td>

</tr>
</table>

124

Chapter 9: Tables

</body>
</html>

You can also span columns and rows within the same table by using appropriate colspan
and rowspan attributes. However, such use is not recommended without a GUI HTML editor
because the code becomes exponentially complex the more spans you make to a table.

Cross-Ref
For more information on GUI HTML editors, see Chapter 19. �

Grouping Columns
HTML 4.01 added a few extra tags to make defining and formatting groups of columns easier.
The tags <colgroup> and <col> are used together to define and optionally format column
groups and individual columns, respectively.

The colgroup tag is used to define and optionally format groups of columns. The tag sup-
ports the same formatting attributes as the <tr> and <td>/<th> tags (align, valign, and so
on). Any columns defined by the column group tag will inherit the formatting contained within
the tag.

To define columns in a group, use the span attribute with the <colgroup> tag to indicate how
many columns are in the group. For example, the following HTML table code places the first
three columns in a group:

<table>
<colgroup span="3">
</colgroup>
...

Note that additional <colgroup> tags can be used to create additional column groups. You
must use additional column groups if the columns you are grouping are not contiguous or
do not start with the first column. For example, the following HTML table code creates three
column groups:

� Columns 1 and 2, formatted with centered alignment

� Columns 3–5, formatted with decimal alignment

� Columns 6–10, formatted with right alignment and bold text

<table>
<colgroup span="2" align="center">
<!-- This group contains columns 1 & 2 /-->
</colgroup>
<colgroup span="3" align="char" char=".">
<!-- This group contains columns 3 - 5 /-->
</colgroup>

125

Part I: Creating Content with HTML

<colgroup span="5" align="right" style="font-weight: bold;" >
<!-- This group contains columns 6 - 10 /-->
</colgroup>
...

Note
Column groups that do not have explicit formatting attributes defined in their respective <colgroup> tags
inherit the standard formatting of columns within the table. However, the group is still defined as a group
and will respond accordingly to table attributes that affect groups (rules = "groups", and so on). �

What if you don’t want all the columns within the group formatted identically? For example,
in a group of three columns, suppose you wanted the center column (column number 2 in the
group) to be formatted with bold text. That’s where the <col> tag comes into play, defining
individual columns within the group. To format a group using the preceding example (middle
column bold), you could use code similar to the following:

<table>
<colgroup span="3">
<!-- This group contains columns 1 & 3 /-->
<col></col>
<col style="font-weight: bold;"></col>
<col></col>
</colgroup>
...

The <col> tag follows similar rules to that of the colgroup tag — namely, the following:

� Empty tags (those without explicit formatting) are simply placeholders and inherit the
formatting of the parent <colgroup>.

� You must define columns in order, and in a contiguous group, using blank <col> tags
where necessary.

� You can use the span attribute with a <col> tag if you want it to format more than one
contiguous column.

� Missing <col> tags result in the corresponding columns inheriting the formatting from the
parent colgroup.

Note that in standard HTML, the column tag has no closing tag. However, in XHMTL, the
<col> tag must be closed by a corresponding </col> tag.

Tip
Column definitions via the <colgroup> or <col> tags do not eliminate or change the necessity of td tags
(which actually form the columns). You must still take care in placing your <td> tags to ensure proper data
positioning within columns. �

126

Chapter 9: Tables

Formatting with Tables
Formatting your documents with HTML tags enables you to create many useful designs for a
variety of purposes. The HTML tag (and related tags) with humble beginnings that revolutionized
document formatting with HTML is the table tag (<table>).

The table tag was originally designed to represent tabular data, numbers, and other data in
columns. However, using a few tricks, such as embedding tables within one another, it is
possible to achieve some pretty fantastic layouts. This section explains how to best utilize tables
for page layout purposes.

Note
With the advent of CSS, there are many who proclaim that tables should no longer be used for any lay-
out purposes, and that instead CSS should be used to style and position elements for the sake of layout.
However, this is not necessarily the case. Despite the existence of CSS, HTML tables still make a perfectly
acceptable layout mechanism, either on a micro level (such as a simple table of headers and values) or on
a macro level (such as the layout basis for an entire page or document).
Arguments can be made for both technologies and the debate can get very heated (try searching for ‘‘html
table layout versus CSS layout’’ at www.google.com). My advice is to use whichever technology makes
sense to you — what you are most comfortable with, what presents your documents in the best light, or
what appears to be the best tool for the job. �

Rudimentary Formatting with Tables
It’s not hard to see how tables can help with formatting elements. For example, consider the
following code and the output shown in Figure 9-14:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>A Simple Form</title>

</head>
<body>
<form>
<p>Name: <input type="text" size="40"></p>
<p>Age:
<input type="radio" name="20to30" value="20to30">
 20-30
<input type="radio" name="31to40" value="31to40">
 31-40
<input type="radio" name="41to50" value="41to50">
 41-50
</p>
</form>
</body>
</html>

127

Part I: Creating Content with HTML

FIGURE 9-14

A rudimentary form using spaces for layout purposes

A simple table can help better align the elements in this form, as shown in the following code
and Figure 9-15:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Rudimentary Form Alignment</title>

</head>
<body>
<form>
<table width="50%" border="1">
<tr>
<td width="25%"><p>Name:</p></td>
<td><p><input type="text" size="40"></p></td>
</tr>
<tr>
<td><p>Age:</p></td>
<td><p>
<input type="radio" name="20to30" value="20to30">
 20-30
<input type="radio" name="31to40" value="31to40">
 31-40

128

Chapter 9: Tables

<input type="radio" name="41to50" value="41to50">
 41-50
</p></td>
</table>
</form>
</body>
</html>

FIGURE 9-15

Aligning the labels and fields in a form using a simple table

However, this serves only to align the labels and fields in two columns. This is better than no
alignment, but if you add a nested table, you can add more order to the radio buttons, as shown
in the following code and Figure 9-16:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Formatting with Nested Tables</title>

</head>
<body>
<form>
<table width="50%" border="1">
<tr>
<td width="25%"><p>Name:</p></td>
<td><p><input type="text" size="40"></p></td>

129

Part I: Creating Content with HTML

</tr>
<tr>
<td><p>Age:</p></td>
<td>
<table width="100%" border="1">
<colgroup span="3" style="text-align:center;">
</colgroup>
<tr>
<td><p><input type="radio" name="20to30" value="20to30"></p></td>
<td><p><input type="radio" name="31to40" value="31to40"></p></td>
<td><p><input type="radio" name="41to50" value="41to50"></p></td>
</tr>
<tr>
<td><p>20-30</p></td>
<td><p>31-40</p></td>
<td><p>41-50</p></td>
</tr>
</table>
</td>
</table>
</form>
</body>
</html>

FIGURE 9-16

Nested tables allow for even more alignment and formatting control

130

Chapter 9: Tables

Note
Of course, in real life the tables in the examples would have even more formatting attributes and/or CSS to
fine-tune the alignment, and the borders would be off or set to accent the formatting. �

Even though these examples are fairly small in scope, it should be easy to see the power and
flexibility tables can lend to alignment, formatting, and even page layout.

Real-world examples
You might be surprised by how many tables are hiding under the veneer of the Web pages you
frequent. For example, take a look at Figure 9-17, which shows a corporate website.

FIGURE 9-17

A corporate website that doesn’t visibly use tables

Figure 9-18 shows the same website with the table borders on. Note the multitude of nested
tables used to achieve the layout.

131

Part I: Creating Content with HTML

FIGURE 9-18

A corporate website with the tables made visible

Figure 9-19 shows another popular layout format, a floating page and two columns of content.
Again, note that the use of tables, visible in Figure 9-20, isn’t readily apparent.

The rest of this chapter shows you how to achieve some of these effects.

Floating page
The floating page layout has become quite popular and is used in pages of all kinds, from cor-
porate sites to personal Web logs. The effect simulates a piece of paper on a desktop and is fairly
easy to create using a few nested tables, as shown in the following code, the output of which is
shown in Figure 9-21:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Floating Table Format</title>
<style type="text/css">
<!-- Sets "desktop" color (behind page) -->

132

Chapter 9: Tables

body {background-color: #B0C4DE;}
</style>

</head>
<body>
<!-- /Body container -->
<!-- (background = border, padding = border width

margin = centered table) -->
<table border="0" cellpadding="4px" cellspacing="0"

style="background-color: black;
margin: 0 auto;">

<tr>
<td>

<!-- Floating page -->
<!-- (padding = page margin) -->

<table border="0" cellpadding="5px" cellspacing="0"
width="732px"
style="background-color: #FFFFFF;">

<tr valign="top">
<td>
<!-- Page content -->
<p>Content goes here.</p>
<!-- Page content -->

</td>
</tr>
</table>
<!-- /Floating page -->

</td>
</tr>
</table>
<!-- /Body container -->
</body>
</html>

Tip
Note the comments in the code delimiting the individual tables and content areas. It is a best practice to
follow standard code formatting (indentation, liberal white space, and so on) and add sufficient comments
to easily keep track of all your tables, how they are formatted, and what they accomplish. �

If you want more of a drop shadow effect, you can play with the borders of the floating page,
setting two adjacent borders to a nonzero value, as shown in the following code:

<!-- Floating page -->
<!-- (padding = page margin) -->

<table border="0" cellpadding="5px" cellspacing="0"
width="732px" height="900px"
style="background-color: #FFFFFF;
border-right: 4px solid black;
border-bottom: 4px solid black;">

133

Part I: Creating Content with HTML

FIGURE 9-19

Another popular layout: floating page and multiple columns of content

This code will visually increase the width of the right and bottom borders, giving the page a
more realistic, three-dimensional drop shadow effect.

Tip
Keep in mind that you can combine various techniques within the same document. For example, you can
put a two-column layout on a floating page by nesting a two-column table in the content area of the float-
ing page table. Then, within one of the columns, you can evenly space out a handful of graphics by nesting
another table in the column. The possibilities are endless. �

Odd graphics and text combinations
You can also use tables to combine text and graphics in nonstandard layouts. For example, note
the header in Figure 9-22. The header graphic is actually several pieces, as shown in Figure 9-23.

A table with no padding and no spacing is used to put the pieces back together into a complete
image, while enabling text to flow to the right of the face portion.

134

Chapter 9: Tables

FIGURE 9-20

The floating page and two-column layout with visible tables

Code for the completed header is shown here:

<!-- Heading container -->
<table border="0" cellpadding="0" cellspacing="0">
<tr>
<td valign="top">

<img border="0" src="images/home_top.gif"
width="240" height="118">

</td>
<td>

<!-- Nav and main graphic -->
<table border="0" cellpadding="0" cellspacing="0">
<tr>
<td width="100%">
<!-- Nav bar -->
<table border="0" cellpadding="0" cellspacing="0"
width="100%">
<tr>
<td width="25%">
<a href="archive/index.html" onfocus="this.blur()"
onMouseOver="archive.src=`images/archive_punch_on.gif’"

135

Part I: Creating Content with HTML

onMouseOut="archive.src=`images/archive_punch_off.gif’"
>
<img name="archive" border="0"

src="images/archive_punch_off.gif" width="132" height="38" />

</td>
<td width="25%">
<a href="guest/index.html" onfocus="this.blur()"
onMouseOver="guest.src=`images/g_punch_on.gif’"
onMouseOut="guest.src=`images/g_punch_off.gif’" >
<img name="guest" border="0"
src="images/g_punch_off.gif" width="116" height="38" />
</td>
<td width="25%">
<a href="mailto:email@example.com" onfocus="this.blur()"
onMouseOver="email.src=`images/e_punch_on.gif’"
onMouseOut="email.src=`images/e_punch_off.gif’" >
<img name="email" border="0"
src="images/e_punch_off.gif" width="113" height="38"/>
</td>
<td width="25%">

<a href="about/index.html" onfocus="this.blur()"
onMouseOver="about.src=`images/a_punch_on.gif’"
onMouseOut="about.src=`images/a_punch_off.gif’">
<img name="about" border="0"
src="images/a_punch_off.gif" width="131" height="38" />
</td>
</tr>

</table>
<!-- /Nav bar -->
</td>
</tr>

<tr>
<td width="100%"><img border="0"
src="images/home_flag.gif" height="80" />
</td>
</tr>

</table>
<!-- /Nav and main graphic -->
</td>
</tr>
<tr>

<td height="158" valign="top"><img border="0"
src="images/home_left.gif" width="239"
height="156" />
<p>SECONDARY CONTENT HERE</p>

</td>
<td valign="top">

<p>MAIN CONTENT HERE</p>
</td>

</tr>
</table>
<!-- /Heading container -->

136

Chapter 9: Tables

FIGURE 9-21

A floating page can add a bit of simple design to your documents.

Note
The preceding listing has been formatted for legibility. However, when put into use on an actual Web page,
all spaces and line breaks that aren’t contained within tags themselves should be removed from between the
<td> and </td> tags. For example, consider the following code from the listing:

<td width="25%">
<a href="guest/index.html" onfocus="this.blur()"
onMouseOver="guest.src=`images/g_punch_on.gif’"
onMouseOut="guest.src=`images/g_punch_off.gif’" >
<img name="guest" border="0"

src="images/g_punch_off.gif" width="116" height="38"
/>

</td> �

This code should be changed to resemble the following, where the only spaces and line breaks
are within the angle brackets of a tag (< and >):

<td width="25%"><a href="guest/index.html"
onfocus="this.blur()"
onMouseOver="guest.src=`images/g_punch_on.gif’"

137

Part I: Creating Content with HTML

onMouseOut="guest.src=`images/g_punch_off.gif’" ><img
name="guest" border="0" src="images/g_punch_off.gif"
width="116" height="38"></td>

Using this technique, you can wrap text and graphics around each other in a variety of ways. For
example, if the graphic used in the preceding example descended on the right as well, you could
use three columns — pieces of the graphic in the first and third, text in the middle.

Caution
It’s important to watch for errant white space in and around your tags when formatting a page using tables.
For example, one single space within a <td> pair can create a visible seam in between the graphics that
make up your header. To avoid this problem, place the line breaks in your code within the tags, between
attributes and such. �

FIGURE 9-22

Presenting graphics and text in a nonstandard format

138

Chapter 9: Tables

FIGURE 9-23

The various pieces of the header graphic

Navigational menus and blocks
The sample page header has its navigational elements in a row at the top of the page. You can
construct similar, vertical layouts for your navigational elements using rowspan attributes in
your tables. For example, consider the following code and the output shown in Figure 9-24:

<table border="1" width="100%">
<tr>

<td rowspan="4" >
<p>Header graphic</p>

</td>
<td>
<p>Nav_1</p>

</td>
</tr>
<tr>

139

Part I: Creating Content with HTML

<td>
<p>Nav_2</p>

</td>
</tr>
<tr>
<td>

<p>Nav_3</p>
</td>

</tr>
<tr>
<td>

<p>Nav_4</p>
</td>

</tr>
</table>

FIGURE 9-24

Using rowspan, you can create vertically stacked elements.

140

Chapter 9: Tables

Note
As you have no doubt realized, there are multiple ways to accomplish many of the designs shown in
this chapter. For example, you could just as easily nest a one-column table in a cell instead of using
rowspan. �

Multiple columns
As covered earlier in this chapter, you can use tables to position elements in columns. This
technique can be used for a variety of layout purposes:

� Providing navigation bars to the right or the left of text

� Putting text into columns

� More precise positioning controls, putting text next to graphics, and so forth

Columnar formatting is simple to accomplish, as shown in the following code:

<table border="1" cellspacing="0" cellpadding="5px"
width="100%">
<colgroup>

<col width="50%">
<col width="50%">

</colgroup>
<tr>

<td colspan="2">Header graphic or navigation can go here</td>
</tr>
<tr>

<td>First column content...</td>
<td>Second column content...</td>

</tr>
</table>

The output of this code is shown in Figure 9-25.

Note
One caveat to creating columns with tables is that the content doesn’t automatically wrap from one column
to the next (as in a newspaper). You must split the text between the columns manually. �

The columns do not have to be the same size or proportional to each other. You can define the
columns in any size you need by using the appropriate formatting attributes. For example, to
create a navigation column to the left that is 200 pixels wide and a text column to the right that
is 400 pixels wide, you could use this column definition:

<colgroup>
<col width="200px">
<col width="400px">

</colgroup>

141

Part I: Creating Content with HTML

FIGURE 9-25

A simple two-column format

Summary
This chapter covered the basics of HTML tables. You learned how to define a table, what each
table element is used for, and how to format table elements to achieve various desired effects.

This chapter also showed you the glamorous side of tables, how they can be used to provide
complex formatting structures in HTML. As mentioned throughout this book, CSS provides
a better mechanism for creating and controlling layout while maintaining the laudable goal of
keeping presentation and content separate. That said, tables still provide a viable means to align,
format, and lay out blocks of text.

From here you will learn about additional structured elements — namely, frames and forms
(Chapters 10 and 11) and continue through the rest of the HTML element categories. Once
you venture into Part III of this book, you will first learn about the basics of CSS (Chapters 25
through 28) before learning about tags for specific elements, such as in Chapter 30, which
describes table- and text-specific CSS.

142

Frames

IN THIS CHAPTER
Frames Overview

Framesets and Frame
Documents

Targeting Links to Frames

Nested Framesets

Inline Frames

Several years ago, almost every document on the Web contained
frames. The frameset structure provided an easy way to create
multiple, separate scrolling areas in a user agent window and a

flexible mechanism to modify the content of frames.

However, frames have turned out to be more of a fad. You can have many
of the benefits provided by using frames through the infinitely more flexible
and powerful CSS formatting methods.

That said, frames still have their uses and have even spawned their own
official Document Type Definitions (DTDs) to handle their special tags and
needs. This chapter introduces the concept of frames and shows you how to
add them to your documents.

Frames Overview
At their simplest level, frames provide multiple separately scrollable areas
within one user window. Many non-Web applications use the technique
of separate panes to provide organization and controls. For example,
Figure 10-1 shows Windows Explorer using the left panes to display
Favorite Links and Folders, and the right pane to display files within the
selected folder.

As you have no doubt noticed, the different panes in applications such as
Windows Explorer can be manipulated separately from other panes. The
same is true for documents utilizing frames.

For example, Figures 10-2 and 10-3 show the same document but the
window in Figure 10-3 has been scrolled to view the bottom of the text in
the document. This has caused the navigation bar to scroll as well, in this
case almost off the screen, where part of it can no longer be immediately
accessed.

143

Part I: Creating Content with HTML

FIGURE 10-1

Applications such as Windows Explorer use multiple panes to display a variety of information and
controls.

Now take a look at Figure 10-4. Each element — the top banner, the navigation bar, and
the main content — has been placed in a separate frame. When the main content is scrolled, the
banner and the navigation menu remain static within their own regions.

Framesets and Frame Documents
Frames are a bit complex to implement, as they require a separate document to define the frame
layout as well as individual documents to actually occupy the frames. This section describes
the pieces of the defining document, the frameset, and shows you how to create a frame-based
layout.

Creating a frameset
A frameset is created like any other HTML document except that its content is limited to
frame-related tags. The following skeletal code is an example of a frameset document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

144

Chapter 10: Frames

<html>
<head>
...
</head>
<frameset attributes>

<frame attributes></frame>
<frame attributes></frame>
...

</frameset>
</html>

FIGURE 10-2

A long document uses scroll bars to enable users to see the entire document.

Note the following about this code:

� The document uses the frameset DTD. The frameset DTD is essentially the same as the
transitional DTD except for the addition of the frame-specific tags (and replacement of the
<body> tag, covered shortly).

� There is no body element. Instead, the <frameset> tag provides the next level container
under <html>.

145

Part I: Creating Content with HTML

� The <frame> tags, nestled inside the <frameset> tag, define the content for the frames
and various properties of the frame itself.

� Other than the <frameset> and <head> sections, there is no other content in the
document.

FIGURE 10-3

When the document is scrolled, the entire view, including the navigation bar on the left and the
banner graphic on top, is moved.

The basics of the frameset and frame tags are covered in the next two sections.

The frameset tag
The frameset tag (<frameset>) defines the layout of the frames in the document. It does so by
specifying whether the frames should be laid out in columns or rows and what each column’s
width should be.

The frameset tag has the following format:

<frameset cols|rows = "column_or_row_size(s)">

The column or row sizes can be specified as percentages of the user agent window; pixels; or
an asterisk (*), which enables the user agent to assign the size. In the last case, the user agent

146

Chapter 10: Frames

typically splits the remaining space across the columns or rows that specify * as their width. In
any case, the resulting frameset will occupy the entire user agent window. The number of entries
of the cols or rows attribute also defines how many frames will be used — each entry needs a
corresponding <frame> tag within the <frameset> tag.

FIGURE 10-4

Frames enable one region to scroll while others remain static.

For example, consider these definitions:

<!-- Two columns, 25% of the window, the other
75% of the window -->

<frameset cols = "25%, 75%">
<!-- Two columns, 25% of the window, the other

75% of the window -->
<frameset cols = "25%, *">
<!-- Three rows, the first 50% of the window, the other

two 25% of the window each -->
<frameset rows = "50%, *, *">
<!-- Two rows, the first 100 pixels high, the second is the

size of the remaining window space -->
<frameset rows = "100px, 200px">

147

Part I: Creating Content with HTML

Note
In the last frameset example, the second row is defined at 200px. However, if the user agent’s window
is larger than 300 pixels high (the total of the rows defined), the second row will be expanded to fill the
space. �

The frame tag
While the frameset tag (<frameset>) is responsible for defining the layout of the entire page (in
terms of number of frames and their size), the frame tag (<frame>) is responsible for defining
properties of each frame.

The frame tag has the following minimal syntax:

<frame name="name_of_frame" src="url_of_content"></frame>

The name attribute gives the frame a unique name that can be referenced by URLs, scripts, and
so on to control the frame’s contents. The src attribute is used to specify the URL of the content
the frame should display.

Using only these two attributes results in a frame with minimal margins, no borders, and auto-
matic scroll bars. More information on controlling these frame attributes is covered in the next
few sections.

Frame margins, borders, and scroll bars
The frame tag supports the additional attributes shown in Table 10-1.

TABLE 10-1

Frame Tag Attributes

Attribute Value(s) Definition

frameborder 0 = no border
(default) 1 = border

Indicates whether the frame has a border or not

longdesc url A document’s URL to use as a long description for the
frame (note that this is largely unsupported by user
agents)

marginheight pixels Sets the top and bottom margins for the frame — the
distance of the frame’s content from its border

marginwidth pixels Sets the left and right margins for the frame — the
distance of the frame’s content from its border

scrolling yes no auto (default) Controls whether the frame displays scroll bars to help
scroll the content displayed in the frame

As mentioned in Table 10-1, the longdesc attribute is not fully supported by most user agents.
Use it if you need to specify a long description, but don’t count on its functionality.

148

Chapter 10: Frames

The margin attributes, marginheight and marginwidth, are self-explanatory, controlling the
inside margin of the frame. They should be used to provide enough white space around the
frame’s content to help make the content clear.

Tip
When using images in a frame, consider setting the margins to zero so the graphic fills the frame entirely
without superfluous white space. �

The frameborder attribute controls whether or not the bounding border of the frame is visible.
Figure 10-5 shows a frameset without borders, and Figure 10-6 shows the same frameset with
borders.

Note
As of this writing, the latest crop of browsers (including the latest versions of Microsoft Internet Explorer
and Firefox) display a white border for each frame, despite the frameborder setting. If frameborder
is set to 1, the border appears as a 3-D, stylized bar, as shown in Figure 10-6. However, setting frame-
border to 0 does not totally eradicate the border as expected. One, non-standards-compliant solution to
remove the border entirely is to place the attribute border="0" in the frameset tag. �

FIGURE 10-5

Without borders, the frame divisions are hard to distinguish, which may work well for a seamless
page design.

149

Part I: Creating Content with HTML

FIGURE 10-6

Frame borders can help users understand the layout of your document and where the edges of each
frame are so they can better manipulate them.

The scrolling attribute controls whether the frame will display scroll bars. The default setting,
auto, allows the user agent to decide. If the frame contains too much content to be displayed,
the user agent will add scroll bars; if the content fits within the frame, the user agent will not
display scroll bars. Use the scrolling attribute accordingly — if you want scroll bars all the
time, or don’t want scroll bars regardless of how the frame’s content displays.

Permitting or prohibiting user modifications
The frame tag also has a noresize attribute that, when set, will not allow a user to modify the
frame’s size. The default is to allow the user to resize the frame.

To resize a frame, you position the pointer over the frame division and drag the border.
Figures 10-7 and 10-8 show the left frame being enlarged. As a consequence, the right frame
shrinks to compensate.

150

Chapter 10: Frames

FIGURE 10-7

To resize a frame, position the pointer over the frame border until a double-headed arrow cursor
appears.

Double-headed
arrow

Targeting Links to Frames
To change a frame’s content, you must be able to target a frame. To do so, you use the name
attribute to uniquely identify your frames. You can then use those names in scripts and anchor
tags to direct new content to the frame.

Scripting languages can use the document’s frame collection to target a frame. For example,
JavaScript can reference the content of a frame named news by changing the value of the fol-
lowing property:

parent.news.location.href

For example, to fill the news frame with the content of www.yahoo.com, a script could use the
following statement:

parent.news.location.href = "http://www.yahoo.com";

151

Part I: Creating Content with HTML

FIGURE 10-8

Dragging the curser resizes the frames accordingly.

Drag border
to new position

You can use similar methods and properties to otherwise manipulate the frame content and
properties.

Cross-Ref
For more information on JavaScript and how it can be used to affect a document’s properties, see
Chapters 16 and 17. �

When you use the frameset DTD, the anchor tag (<a>) supports the target attribute, which
can be used to target a frame for content. The target attribute supports the values shown in
Table 10-2.

Note
To understand the difference between the target attribute’s _parent and _top values, you must under-
stand nested frames, which are covered in the next section. �

The easiest way to direct content to a frame is to use the frame’s name in the target attribute
of an anchor. This technique is often used to control one frame independently from another,

152

Chapter 10: Frames

especially where one frame has a navigation control and the other displays variable content. For
example, the following code provides a handful of navigation links in the left (menu) frame,
and the content is displayed in the right (content) frame. Each button in the menu frame is
wrapped in an appropriate anchor that specifies the content frame as the destination for the URL
to which it links:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

<html>
<head>
<title>On Target Games - Menu</title>
<style type="text/css">
p { font: Arial;

font-size: 24pt;
color: blue; }

</style>
</head>
<body style="background-color: #CBCC66;">
<table border="0" width="100%">
<colgroup>
<col style="text-align: center;"></col>
</colgroup>
<tr><td><p>Home</p></td></tr>
<tr><td><p>Games</p></td></tr>
<tr><td><p>Reviews</p></td></tr>
<tr><td><p>Stores</p></td></tr>
<tr><td><p>Contact</p></td></tr>
</table>
</body>
</html>

TABLE 10-2

Target Attribute Values

Value Definition

frame_name Displays the content in the frame specified by frame_name

_blank Opens a new window to display the content

_parent Displays the content in the parent frameset of the current frame

_self Displays the content in the current frame

_top Displays the content in the current window, without frames

Note that each anchor specifies a different document, and that the document specified should
be loaded into the content frame via the target attribute. Figure 10-9 shows what this code
looks like in a browser; notice the menu on the left edge of the window.

153

Part I: Creating Content with HTML

FIGURE 10-9

In this simple frame-based navigation scheme, when the user clicks a link in the menu (left) frame,
the content changes in the content (right) frame.

Nested Framesets
You have seen how to create rows and columns using framesets, but what if you want a little of
both, as shown in the examples in this chapter (two rows, the second one having two columns)?

In such cases, you need to nest one frameset inside of another. For example, the following frame-
set code results in the layout shown in the document example used throughout this chapter (as
in Figure 10-9, for example):

<!-- The master frameset, specifying two rows / -->
<frameset rows="250px,*">
<!-- The first row, one column / -->
<frame name="top" src="top.html" marginheight="0px"

frameborder="0" scrolling="no"></frame>
<!-- The nested frameset, specifying two columns / -->
<frameset cols="130px,*">
<frame name="menu" src="menu.html" frameborder="0"

scrolling="no"></frame>

154

Chapter 10: Frames

<frame name="content" src="maincontent.html"
marginwidth="25px" marginheight="25px"
frameborder="0" scrolling="auto"></frame>

</frameset>
</frameset>

To achieve the layout, a column-based frameset is nested inside the second row of the row-based
frameset. In essence, the second row of the top frameset becomes its own frameset. You could
conceivably nest other framesets within this layout, but using more than two or three frames
tends to clutter the document and confuse the user.

Note
The _parent and _top values of the anchor tag’s target attribute were mentioned earlier in this chapter.
Looking at the example in this section, you can see how those two values would each affect the target.

The _parent value causes the content to load within the frameset — that is, the immediate parent of the
current frame. For example, using _parent in a link within the content frame would cause the specified
content to load in the area defined for the column-based frameset.

The _top value causes the content to load within the top-most frameset. For example, using _top in a
link within the content frame causes the specified content to load in the area defined for the row-based
frameset, effectively taking up the entire user agent window. �

Inline Frames
Inline frames were conceived as a method to enable smaller pieces of content to be incorporated
in scrollable containers within a larger document. Although you can use regular framesets to
create individually scrolling regions, the layout is somewhat hampered by the stringent row and
column layout design inherent in framesets.

Figure 10-10 shows a sample inline frame placed in a document. Note that the frame is truly
‘‘inline’’ within the objects around it.

Note
Inline frames are not fully supported by all user agents. Inline frames are safe to use only if you are rela-
tively certain that your entire audience will be using an inline-frame-compatible browser to view your
documents. If this is not the case, you should stay away from inline frames, or code your documents to
offer incompatible browsers an alternative.

If you do decide to use inline frames, keep in mind that, like other frame constructs, your documents will
validate against frameset DTDs only. �

Inline frames are accomplished with the <iframe> tag. This tag has the following minimal
format:

<iframe src="url_of_content"></iframe>

155

Part I: Creating Content with HTML

FIGURE 10-10

Inline frames define separate scrollable regions truly inline within the document.

The inline frame tag has a handful of additional attributes, as shown in Table 10-3.

TABLE 10-3

Inline Frame Tag Attributes

Attribute Value(s) Definition

align Left right top
middle bottom

Alignment of the frame to surrounding text

frameborder 0 = no border 1 =
border (default)

Indicates whether the frame has a visible border or not

height pixels % Height of the frame

longdesc url URL to a document containing the long description of
the frame

marginheight pixels Size of the internal top and bottom margins of the frame

156

Chapter 10: Frames

Attribute Value(s) Definition

marginwidth pixels Size of the internal left and right margins of the frame

name name_ of_ frame Name of the frame (for use in scripting and otherwise
referencing the frame and its properties)

scrolling Yes no auto Indicates whether the frame has scroll bars or not

src url URL of the content to display in the frame

width pixels % The width of the frame

These attributes function exactly like their frame-based kin. It is recommended that you use as
many attributes as possible to clearly specify how your inline frame layout will be rendered.

The following code snippet shows how the inline frame was inserted into the document
displayed in Figure 10-10:

content.html
...
<p>Welcome to On Target Games, where Your Fun is Top Priority!</p>
<iframe src="newsflash.html" align="right"
style="margin-left:10px;"></iframe>

<p>At On Target Games we are dedicated to bringing you the best in
computer and console gaming entertainment. Our wide selection of
inventory, our helpful staff, our convenient hours, and abundant
store and online resources all exist to help you get the most out of
your gaming experience.</p>
...

newsflash.html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd"><html>

<head>
<title>On Target Games - News Flash!</title>

</head>
<body > <!-- style="background-color: #CBCC66;" /-->
<h3>Gopher Hunt Slips
Into Next Year</h3>
<p>Rodent Studios has recently announced that their highly

anticipated game, "Gopher Hunt," will miss the Christmas season and
is now slated for release in early 2008. Gopher Hunt is the
semi-sequel to "Badger Brigade," Rodent Studios smash hit of last
year.</p>
<p>Company president Samuel Perry could not be reached for comment,

but all release dates for the game have been removed from the
company website. As you may recall, "Badger Brigade" is one of the
few titles to which On Target Games awarded 5-stars to and the only
game to stay on the best seller list for a whopping 24 week.</p>

157

Part I: Creating Content with HTML

<p>We hope this slip isn’t a sign of bigger problems at RS, but we
will keep you in the loop.</p>
</body>
</html>

Summary
This chapter introduced the concept of frames, including the inline frame construct. Using
frames or inline frames, you can insert separately scrollable and formatted regions inside a larger
document. As with most older HTML technologies, you should take care when choosing to use
frames; in many instances, you’re better off learning and using CSS instead.

The next chapter covers how to use HTML to collect data via forms. Following that, Chapters 12
and 13 round out our coverage of HTML with images, colors, and multimedia.

158

Forms

IN THIS CHAPTER
Understanding Forms

Inserting a Form

Field Labels

Text Input Boxes

Password Input Boxes

Radio Buttons

Check Boxes

List Boxes

Large Text Input

Hidden Fields

Buttons

Images

File Fields

Submit and Reset Buttons

Tab Order and Keyboard
Shortcuts

Preventing Changes

Fieldsets and Legends

Using Events with Forms

Form Scripts and Script
Services

HTML’s somewhat humble beginnings were send only; that is, the
user could receive data sent from a Web server, but the server could
not receive data sent from the user. This was quickly identified as

a deficiency of HTML. Because most user agents were being run in graphical
environments that included rich user interfaces, creating a similar interface
to allow users to submit data back to a server seemed a natural extension.

Today, HTML forms present a complex yet flexible framework to allow users
basic controls over data. These controls can be used to provide input back to
scripts or to submit data. This chapter delves into the particulars of HTML
forms.

Understanding Forms
HTML forms simply place a handful of GUI controls on the user agent
screen to allow the user to enter data. The controls can allow text input and
selection of predefined options from a list, radio buttons or check boxes, or
other standard GUI controls.

After the data is entered into the fields, a special control is used to pass the
entered data on to a program that can do something useful with it. Such
programs are typically referred to as form handlers because they ‘‘handle’’ the
form data submitted to the server.

The following code shows a basic HTML form whose output is shown in
Figure 11-1:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

159

Part I: Creating Content with HTML

<title>A Simple Form</title>
</head>
<body>
<form name="sample" id="sample" action="formhandler.cgi"
method="post">
<table cellspacing="20">
<tr><td>
<!-- Text boxes -->
<table border="0">
<tr>
<td><p><label for="fname">First Name: </label></p></td>
<td><p><input type="text" name="fname" id="fname"

size="20" /></p></td>
</tr><tr>
<td><p><label for="lname">Last Name: </label></p></td>
<td><p><input type="text" name="lname" id="lname"

size="20" /></p></td>
</tr>
</table>
<!-- Text area -->
<p><label for="address">Address:</label>

<textarea name="address" id="address"
cols=20 rows=4 /></textarea>

</p>
<!-- Password -->
<table border="0">
<tr>
<td><p><label for="password">Password:</label></p></td>
<td><p><input type="password" name="password" id="password"

size="20" /></p></td>
</tr>
</table>
</td>
<td>
<!-- Select list -->
<p><label for="products">What gaming consoles do you

own or are you interested in?</p>
<select name="consoles[]" id="consoles" multiple="multiple"

size="4" />
<option id="PS3">Sony Playstation 3
<option id="XBOX">XBOX 360
<option id="NINTENDO">Nintendo Wii
<option id="OTHER">Other

</select>
</p>

<!-- Check boxes -->
<fieldset>

<legend>Contact me via: </legend>
<p><input type="checkbox" name="email" id="email"

Checked />

160

Chapter 11: Forms

<label for="email">Email</label>

<input type="checkbox" name="postal" id="postal" />
<label for="postal">Postal Mail</label></p>

</fieldset>
</td>
</tr>
<tr>
<td>
<!-- Radio buttons -->
<fieldset>
<legend>How many games do you buy in a year?</legend>
<p><input type="radio" name="buy" value="onethree"

id="onethree" checked="checked" />
<label for="onethree">1-3</label>

<input type="radio" name="buy" value="fiveten" id="fiveten" />
<label for="fiveten">5-10</label>

<input type="radio" name="buy" value="tenfifteen"
id="tenfifteen" />
<label for="tenfifteen">10-15</label></p>

</fieldset>
</td>
<td>
<!-- Submit and Reset buttons -->
<p>
<input type="submit" />
<input type="reset" />
</p>

<!-- Generic Button -->
<p>
<input type="button" name="Leave" value="Leave site!" />
</p>
<!-- Image -->
<input type="image" name="sirveybutton"
src="images/SirVeyButton.jpg" />
<!-- Hidden field -->
<input type="hidden" name="referredby" value="Google" />

</td>
</tr>
</table>

</form>
</body>
</html>

The individual form fields are covered in the following sections.

Note
Many form tags do not have closing tags. However, XML and its variants require that all elements be closed.
If you are coding for XML or one of its variants (such as XHTML), be sure to close your tags by including
the closing slash (/) at the end of tags that lack a formal closing tag. �

161

Part I: Creating Content with HTML

FIGURE 11-1

A simple HTML form

Inserting a Form
You insert a form into your document by placing form fields within <form> tags. The entire
form or any of the tags can be formatted like any other element in your document, and can be
placed within any element capable of holding other elements (paragraphs, tables, and so on).

The <form> tag has the following minimum format:

<form action="url_to_send_data" method="get/post">

The action attribute defines a URL where the data from the form should be sent to be handled.
Although you can use just about any URL, the destination should be a script or other construct
capable of correctly interpreting and doing something useful with the data.

Note
Form actions and form data handlers are covered in the section ‘‘Form Scripts and Script Services’’ later in
this chapter. �

162

Chapter 11: Forms

The second attribute, method, controls how the data is sent to the handler. The two valid values
are GET and POST. Each value corresponds to the HTTP protocol of the same name.

HTTP GET
The HTTP GET protocol attaches data to the actual URL text to pass the data to the destination
specified in the action attribute. You have probably noticed URLs that resemble the following:

http://www.on-target-games.com/forms.cgi?id=45677&data=Taarna

The data appears after the question mark and is in name/value pairs. For example, the name id
has the value of 45677, and the name data has the value of Taarna.

Note
In most cases, the name corresponds to field names from the form and may relate to variables in the data
handler. �

Because the data is passed in the text of the URL, it is easy to implement — you can pass data
by simply adding appropriate text to the URL used to call the data handler. However, GET is also
inherently insecure. Never use GET to send confidential, unencrypted data to a handler because
the data is clearly visible in most user agents and can be easily sniffed by hackers.

HTTP POST
The HTTP POST method passes data encoded in the HTTP data stream. As such, it is not typi-
cally visible to a user and is therefore a more secure method to pass data, but it can be harder
to implement. Thankfully, HTML forms and most other Web technologies make passing data via
POST a trivial task.

Additional <form> attributes
The <form> tag has many additional attributes, which are listed in Table 11-1.

Although you may not need these attributes in simple forms, these attributes can be very useful.
The accept, accept-charset, and enctype attributes are invaluable for processing nontex-
tual and international data. The id and name attributes should be used to uniquely identify a
form in your document, especially if you use more than one form in the same document.

Note
Although you can set a field’s id and name to the same value, it’s important to understand the use of each.
The id attribute is used primarily in client-side scripts (like JavaScript) to uniquely identify and manipulate
a control. The name attribute is used to uniquely reference a field value when a form is passed to a form
handler on the server side. �

163

Part I: Creating Content with HTML

TABLE 11-1

<form>Tag Attributes

Attribute Values

accept A comma-separated list of content types that the handler’s server will accept

accept-
charset

A comma-separated list of character sets the form data may be in

enctype The content type of the form data

id A unique identifier for the form object (replaces the name attribute)

name The name of the form (deprecated, use the id attribute instead)

target Where to open the handler URL (deprecated)

Field Labels
The <label> tag defines textual labels for form fields. It has the following format:

<label for="id_of_related_tag">text_label</label>

For example, the following code defines a label for a text box:

<p><label for="FirstName">First Name: </label>
<input type="text" id="FirstName" value="" size="30"
maxlength="40" /></p>

The purpose of the <label> tag is related to accessibility. Most users can rely upon the layout
of your forms to determine which labels go with what fields. However, if the user agent does not
have a visual component, or if the user is visually impaired, the form’s visual layout cannot be
relied upon to match labels and fields. The <label> tag’s for attribute ensures that the user
agent can adequately match labels with fields.

Text Input Boxes
One of the most frequently used fields of HTML forms is the simple text field. This field allows
for the input of smaller pieces of text — names, addresses, search terms, and so on.

The text input field tag has the following format:

<input type="text" id="id_of_field" value="initial_value"
size="size_of_field" maxlength="max_characters_allowed" />

Although not all of the attributes previously listed are strictly required, they do represent the
minimum attributes that you should always use with your text boxes. The following sample text

164

Chapter 11: Forms

box is designed to accept a name, appears 30 characters long, accepts a maximum of 40 charac-
ters, and has no initial value:

<p>Name: <input type="text" id="username" value=""
size="30" maxlength="40" /></p>

The following code example defines a text box to accept an e-mail address. It appears 40
characters wide, accepts only 40 characters, and has an initial value of info@oasisof
tranquility.com:

<p>Email: <input type="text" id="email"
value="info@oasisoftranquility.com" size="40"
maxlength="40" /></p>

Password Input Boxes
The password input box is similar to the text box but visually obscures data entered into the box
by displaying asterisks instead of the actual data entered into the field. The following example
displays a password field that accepts 20 characters:

<p>Password: <input type="password" id="password" value=""
size="20" maxlength="20" /></p>

The password field accepts the same attributes as the text field.

Caution
The password field only visibly obscures the data onscreen to help stop casual snoops from seeing what a
user inputs into a field. It does not encode or in any way obscure the information at the data level. As such,
be careful how you use this field. �

Radio Buttons
Radio buttons are groups of small, round buttons that enable the user to choose one option
in each group. The name ‘‘radio’’ button comes from how old-fashioned radios used to be
tuned — you pushed one of many buttons to tune to a preset station. When one button was
pushed, the rest were reset to the out, or off, position. Like those buttons, form radio buttons
are mutually exclusive: Only one of the group can be set. When one is selected, the others in
the group are deselected.

The radio button field has the following format:

<p><input type="radio" id="control_id" name="group_name" [checked="checked"]
value="value_if_selected" /> Descriptive Text for Button</p>

Note that the value attribute defines what value is returned to the handler if the button is
selected. This attribute should be unique between buttons in the same group. However, the name
attribute should be the same for all buttons in a group.

165

Part I: Creating Content with HTML

The following example code defines a group of radio buttons that enables users to select their
gender:

<p>Gender:

<input type="radio" id="gender_male" name="gender" value="male" /> Male
<input type="radio" id="gender_female" name="gender" value="female" />

Female</p>

If you want a button selected by default, add the checked attribute to the appropriate button’s
tag. For example, to have ‘‘Male’’ checked by default, you would change the preceding code to
the following:

<p>Gender:

<input type="radio" id="gender_male" name="gender" value="male"
checked="checked" /> Male

<input type="radio" id="gender_female" name="gender" value="female" />
Female</p>

It is good form to always set a default button checked in a group of radio buttons.

Tip
XML and its variants do not allow attributes without values. HTML will allow the checked attribute to be
used with or without a value. To ensure that your code remains as compliant as possible, specify a checked
box with the checked attribute as checked="checked" instead of just checked. �

Check Boxes
Check boxes are small, square boxes used to select non-mutually exclusive options. They are so
named because when selected, they display a checkmark (or more commonly an X) in the box
like the check boxes in paper lists.

The checkbox field has the following format:

<input type="checkbox" id="id_of_field" [checked="checked"]
value="value_if_selected" />

As you can see, other than the mutually exclusive issue, check boxes are very similar in defini-
tion to radio buttons. The following example displays a check box that enables users to select
whether they want to receive solicitation e-mails:

<p><input type="checkbox" id="spam_me" checked="checked" value="spamme" />
Add me to your email list</p>

Note that the checked attribute can be used to preselect check boxes in your forms. Also, just
like radio buttons, the value attribute is used as the value of the check box if it is selected. If
no value is given, selected check boxes are given the value of ‘‘on.’’

166

Chapter 11: Forms

List Boxes
List boxes enable users to pick one or more textual items from a list. The list can be presented in
its entirety, with each element visible, or as a pull-down list from which users can scroll to their
choices.

List boxes are implemented using <select> and <option> tags, and optionally the
<optgroup> tag.

The <select> tag provides the container for the list and has the following format:

<select id="id_of_field" size="items_to_show" [multiple="multiple"] />

The <option> tag defines the items for the list. Each item is given its own <option> tag. This
tag has the optional attributes shown in Table 11-2.

TABLE 11-2

<option>Tag Attributes

Attribute Values

label A shorter label for the item that the user agent can use

selected Indicates that the item should be initially selected

value The value that should be sent to the handler if the item is selected; if this
attribute is omitted, the text of the item is sent instead.

The following is an example of a minimum set of <option> tags:

<option>Sunday</option>
<option>Monday</option>
<option>Tuesday</option>
<option>Wednesday</option>
<option>Thursday</option>
<option>Friday</option>
<option>Saturday</option>

Occasionally, you might want to group options of a list together for clarity. For this you use
<optgroup> tags, which encapsulate items that should be in that group. For example, the fol-
lowing code defines two groups for the preceding list of options, weekend and weekday:

<optgroup label="Weekend">
<option>Sunday</option>
<option>Saturday</option>

</optgroup>
<optgroup label="Weekday"

167

Part I: Creating Content with HTML

<option>Monday</option>
<option>Tuesday</option>
<option>Wednesday</option>
<option>Thursday</option>
<option>Friday</option>

</optgroup>

Different user agents display option groups differently, but the default behavior is to display the
option group labels above the options to which they apply, as shown in Figure 11-2.

FIGURE 11-2

Option groups are displayed in the list as nonselectable items.

The code to combine all three tags to create a list would resemble the following:

<p>Select the days you are available:
<select id="AvailDays[]" name="AvailDays[]" size="5"
multiple="multiple">

<optgroup label="Weekend">
<option>Sunday</option>
<option>Saturday</option>

</optgroup>
<optgroup label="Weekday"

168

Chapter 11: Forms

<option>Monday</option>
<option>Tuesday</option>
<option>Wednesday</option>
<option>Thursday</option>
<option>Friday</option>

</optgroup>
</select>
</p>

Note
Notice the brackets ([]) after the select field’s ID. These brackets are used because some languages that
form handlers are written in require notification if a field will contain multiple items. In the preceding case,
the select field has included the multiple attribute, so the field can indeed return multiple values. The
brackets signal the form handler to expect this, whether multiple values are actually returned or not.

As of this writing, only handlers written in PHP are known to require this convention. However, the use of
brackets will not harm handlers written in other languages, so it’s a good habit to adopt. �

Large Text Input
For large pieces of text, you can use the <textarea> tag. This tag can accept textual input of
up to 1,024 characters and uses a multiline text box for input.

The <textarea> tag has the following format:

<textarea id="id_of_field" name="name_of_field" cols="number_of_columns"
rows="number_of_rows"></textarea>

Note that the <textarea> tag is one of the few form tags that requires both an open tag and a
close tag. If you want the field to have default content, the content should be placed between the
tags. For example, the following code results in the initial form shown in Figure 11-3:

<textarea cols="50" rows="6">
John Doe
123 Main Street
Anywhere, USA
</textarea>

Tip
Whatever is placed between the <textarea> tags appears verbatim in the text box when the form is first
displayed. Therefore, it is important to carefully watch the formatting of your HTML code. For example, if
you want the field to be initially blank, you cannot place the open and close tags on separate lines in the
code:

<textarea>
</textarea>

This would result in the field containing a newline character — it would not be blank. �

169

Part I: Creating Content with HTML

FIGURE 11-3

You can set a default value for the <textarea> tag by placing content between the open and close
tags.

Note that the text entered into the textarea field wraps within the width of the box, but the
text is sent verbatim to the handler. If the user enters line breaks, then those breaks are also sent
to the handler. However, the wrapped text (without hard line breaks) is sent without breaks of
any kind.

Note
Previous versions of HTML supported a wrap attribute for the <textarea> tag. This attribute could be
used to control how text wrapped in the text box as well as how it was sent to the handler. Unfortunately,
user agent support for this attribute was inconsistent — you could not rely on a browser to follow the
intent of the attribute. As such, the attribute has been deprecated and should not be used. �

Hidden Fields
Hidden fields are used to add data to your form without displaying it to the user. The hidden
field has the following format:

<input type="hidden" id="id_of_field" name="name_of_field"
value="value_of_field" />

170

Chapter 11: Forms

Hidden fields are used mostly for tracking data, and other than not being visibly displayed, are
like any other field. For example, in a multipage form, a userid field can be hidden in the form
to ensure that subsequent forms, when submitted, are tied to the same user data.

Keep in mind that hidden fields do not display on the user agent but are still visible in the doc-
ument’s code. As such, hidden fields should never be used for sensitive data.

Buttons
Occasionally, you might need additional, custom buttons on your form. For those cases, you can
use the button field, which has the following format:

<input type="button" id="id_of_field" name="name_of_field"
value="text_for_button" />

This tag results in a standard graphical button being displayed on the form. The following code
example results in the button shown in Figure 11-4:

<input type="button" id="BuyNow" name="buy_button" value="Buy Now!" />

FIGURE 11-4

You can use the button field to add custom buttons to your form.

171

Part I: Creating Content with HTML

Buttons by themselves, however, are fairly useless on a form. To have the button actually do
something, you must link it to a script via onclick or other event attributes. For example, the
following code results in a button that, when clicked, runs the script "buynow":

<input type="button" id="BuyNow" name="buy_button" value="Buy Now!"
onClick="buynow();" />

Cross-Ref
For more information on onclick and other form field event handlers, see the section ‘‘Using Events with
Forms’’ later in this chapter. You can also refer to Chapters 16 and 17. �

Images
Images provide a graphical means to convey a message. Using the image type of the <input>
tag, you can add images to your form, images that can be used along with other form elements
to gather data. The image field has the following format:

<input type="image" id="id_of_field" name="name_of_field"
src="url_to_image_file" />

The image type of the <input> tag also serves as a submit button, giving you the option of eas-
ily providing a graphical button. Simply put, if you include an image type <input> tag in your
form and click the resulting image, it will behave like a Submit button (and likely submit the
form).

Note
Submit buttons are covered later in this chapter. �

However, like the button field, image fields by themselves do not provide any actual form con-
trols. To use the image for input purposes beyond submitting the form, it must be linked to a
script. The following example causes the image buynow.jpg to be displayed on a form. When
the image is clicked, the script buynow is run.

<input type="image" id="BuyNow" name="BuyNow_graphic" src="buynow.jpg"
onclick="buynow()" />

File Fields
File fields enable users to browse for a local file and send it as an attachment to the form data.
The file field has the following format:

<input type="file" id="id_of_field" name="name_of_field"
size="display_size_of_field" />

172

Chapter 11: Forms

The file field results in a text box with a button that enables users to browse for a file using
their platform’s file browser. Alternately, users can simply type the path and name of the file in
the text box. Figure 11-5 shows an example of a file field in Internet Explorer.

FIGURE 11-5

The file field enables users to send a local file.

However, in order to use this control in your forms you must do the following:

� Specify your form as multipart, which allows the file to be attached to the rest of the data.

� Use the POST, not the GET, method of form delivery.

This means your <form> tag should resemble the following:

<form action="formhandler.cgi" method="post"
enctype="form/multipart">

The form handler you send your form’s data to must also be multipart-aware to be able to handle
the data sent to it.

173

Part I: Creating Content with HTML

Submit and Reset Buttons
Submit and Reset buttons provide control mechanisms for users to submit the data entered to a
handler and reset the form to its default state. These buttons have the following format:

Submit button
<input type="submit" id="id_of_field" name="name_of_field"
[value="text_for_button"] />

Reset button
<input type="reset" id="id_of_field" name="name_of_field"
[value="text_for_button"] />

The value attribute for both tags is optional — if this attribute is omitted, the buttons will dis-
play default text (usually Submit and Reset, but ultimately determined by the user agent). Note
that some user agents use fairly inappropriate text, such as ‘‘Submit Query.’’ It is a good idea to
include the value attribute and appropriate text of your own.

The Submit button, when clicked, causes the form to be submitted to the handler specified in
the <form> tag’s action attribute. Alternately, you can use the onclick attribute to call a
script to preprocess the form data before it is passed on to the handler.

The Reset button, when clicked, causes the form to be reloaded and its fields reset to their
default values. You can also use the onclick attribute to change the button’s behavior, calling a
script instead of reloading the form.

Tip
Use of onclick to change the Reset button’s behavior is not recommended. Using onclick to cause the
Submit button to run a script for preprocessing is an expected process, but the Reset button should always
reset the form. If you need a button to perform some other function, use a custom button that is appropri-
ately labeled. �

Tab Order and Keyboard Shortcuts
Two additional attributes, tabindex and accesskey, should be used with your form fields to
increase their accessibility.

The tabindex attribute defines what order the fields are selected in when the user presses the
Tab key. This attribute takes a numeric argument that specifies the field’s order on the form.

The accesskey attribute defines a key the user can press to directly access the field. This
attribute takes a single letter as an argument — that letter becomes the key the user can press to
directly access the field.

174

Chapter 11: Forms

Note
Keys specified in accesskey attributes usually require an additional key to be pressed simultaneously with
the chosen key. For example, user agents running on Windows require the Alt key to be pressed along with
the letter specified by accesskey. Other platforms require similar key combinations, which typically follow
the GUI interface conventions of the platform. �

The following example defines a text box that can be accessed by pressing Alt+F on Windows
platforms, and is third in the tab order:

<p><label for="FirstName"><u>F</u>irst Name: </label>
<input type="text" id="FirstName" name="FirstName" value="" tabindex="3"
accesskey="F" size="30" maxlength="40" /></p>

Notice the visual cue given to users, clueing them in to the available shortcut key, via underlin-
ing the F in the field’s label. Although it is not always possible to provide such cues, doing so
will greatly improve the usability of your forms.

Preventing Changes
There are two ways to display information in common form fields but not allow users to change
the data: by setting the field to read-only or disabled.

You can add the readonly attribute to text fields to prevent users from being able to edit the
data contained therein.

The disabled attribute effectively disables a control (usually graying out the control, consistent
with the user agent’s platform method of showing disabled controls) so the user cannot use it.

The following code shows examples of both a read-only and a disabled control. The output of
this code is shown in Figure 11-6:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Read Only and Disabled Fields</title>

</head>
<body>
<form name="sample" id="sample" action="formhandler.cgi"

method="post">
<table cellspacing="10" width="600">
<tr><td width="25%">
<p>Customer Code (readonly):</p>
</td><td>
<input type="text" size="12" value="X234GG"

175

Part I: Creating Content with HTML

readonly="readonly" />
</td></tr>
</table>
<table>
<tr><td>
<p>Zip Code (disabled):</p>
</td><td>
<input type="text" size="10" value=""

disabled="disabled" />
</td></tr>
</table>

</form>
</body>
</html>

FIGURE 11-6

Disabled and read-only fields can be used to show data without the data being editable.

Although the two attributes make the fields look similar when displayed, the readonly field can
be selected, but not edited. The disabled field cannot be selected at all.

176

Chapter 11: Forms

Tip
Disabling a control that is not applicable in certain instances is common practice. For example, international
addresses do not have a U.S. zip code. When users indicate that they have an international address, you
might decide to disable the zip code field so they do not enter data in it.

You can use client-side scripts to dynamically disable controls. Use the onblur or onchange actions to
call a script from fields that could change the enabled status of other fields — those scripts check the data
entered and enable or disable other fields by changing the value of that field’s disabled attribute. For
more information on onclick and other form field actions, see the section ‘‘Using Events with Forms’’
later in this chapter, and Chapter 16. �

Fieldsets and Legends
Sometimes it is advantageous to visually group certain controls on your form. This is a stan-
dard practice for graphical user agents, as shown in Figure 11-7, where the dialog controls are
separated into distinct sections: Home page, Browsing history, Search, Tabs, and Appearance.

FIGURE 11-7

Grouping controls enables users to better understand a form’s organization.

177

Part I: Creating Content with HTML

The <fieldset> tag is used as a container for form elements, and results in a thin border being
displayed around the elements it surrounds. For example, the following code results in the out-
put shown in Figure 11-8:

<fieldset>
<p>Gender:

<input type="radio" id="gender" value="male" /> Male

<input type="radio" id="gender" value="female" /> Female</p>
</fieldset>

FIGURE 11-8

The <fieldset> tag can help add organization to your forms.

The <legend> tag allows the surrounding fieldset box to be captioned. The following code
adds a caption to the previous example, the output of which is shown in Figure 11-9:

<fieldset>
<p><legend> Gender </legend></p>
<input type="radio" name="gender" value="male"/ > Male

<input type="radio" name="gender" value="female" /> Female</p>
</fieldset>

178

Chapter 11: Forms

FIGURE 11-9

The <legend> tag can add captions to your fieldsets.

Using Events with Forms
Another important enhancement to HTML 4 is the addition of events. Events are user or user
agent actions that can be captured and acted upon by HTML code. The action is captured via
special event attributes added to key tags in your HTML code. These attributes specify the event
to watch for and the script to run if the event is encountered.

For example, the onclick event can be used to run a script if an element is clicked. This event
is particularly handy for button fields in a form, which otherwise perform no action when
clicked. For example, the following HTML code specifies that the JavaScript function addCoupon
should be run when the coupon button is clicked:

<input type="button" id="coupon" name="coupon" value="Add Coupon"
onClick="addCoupon()" />

The addCoupon script is defined elsewhere — in the document or external script file — and can
do any number of things when called. Typically, events and scripts are used to manipulate form
data — for example, add shipping costs, validate information entered, dynamically change the
form depending on information entered, and more.

179

Part I: Creating Content with HTML

Note
Event attributes can be added to any HTML entity. However, they are most useful in conjunction with forms
or other dynamic elements. For more information on scripting, see Chapter 16. For more information on
dynamic HTML, see Chapter 17. �

A full list of available event attributes is shown in Table 11-3.

TABLE 11-3

Event Attributes

Event Trigger

onAbort An element’s loading is interrupted.

onBlur An element loses focus.

onChange An element’s content is changed.

onClick An element is clicked.

onDblclick An element is double-clicked.

onError An error occurs while loading an element or document.

onFocus An element receives focus.

onKeydown A key is pressed.

onKeypress A key is pressed or held down.

onKeyup A key is released.

onLoad An element or document finishes loading.

onMousedown A mouse button is pressed.

onMousemove The mouse pointer is moved.

onMouseout The mouse pointer is moved away from an element.

onMouseover The mouse pointer is moved over an element.

onMouseup A mouse button is released.

onReset The Reset button is clicked.

onResize A window or frame is resized.

onSelect Text in an element is selected.

onSubmit The Submit button is clicked.

onunload The current document is exited or closed.

The following code shows a sample use of the onClick event. When the user clicks the Evaluate
button, a script takes the equation in the equation field, evaluates it, and places the value in
the results field. A sample run of the process is shown in Figure 11-10.

180

Chapter 11: Forms

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>A Simple Calculator</title>
<script type="text/JavaScript">

function eval_eq() {
// Get the value of the equation field
var x=document.getElementById("equation").value;
// Evaluate it (eval) and put the results in
// the results field

document.getElementById("results").value=eval(x);
}

</script>
</head>
<body>
<form name="sample" id="sample" action="formhandler.cgi"

method="post">
<p>Type an equation into the field below and click the
Evaluate button to evaluate it. Click Reset to clear
the form and start over.

<table border="0" cellpadding="10px">
<tr style="padding-bottom: 10px;">
<td><label for="equation">Type your equation here: </label></td>
<td><input type="text" id="equation" size="40" value="" /></td>
</tr>
<tr>
<td><label for="results">Your results: </label></td>
<td><input type="text" id="results" size="40" value=""

disabled="disabled" /></td>
</tr>
<tr>
<td><input type="button" id="evaluate" value="Evaluate"

onClick="eval_eq();" /></td>
<td><input type="Reset" id="Reset" /></td>
</tr>
</table>
</p>
</form>
</body>
</html>

Don’t worry if this isn’t clear to you at this point. Adding scripting to the HTML mix is a fairly
advanced concept. It is introduced here for completeness, but more information on scripting can
be found in Chapters 16 and 17.

Tip
If you plan to do a lot of scripting in your HTML documents, you will be best served by picking up a ded-
icated JavaScript book. Although you may learn the basics here, more advanced script usage is outside the
scope of this book. �

181

Part I: Creating Content with HTML

FIGURE 11-10

The onClick event enables the button object to perform tasks on other form elements via JavaScript.

Form Scripts and Script Services
As previously mentioned in the section ‘‘Understanding Forms,’’ form data is typically passed to
a data handler, a script or program that does something useful with the data.

Form handlers typically do one or more of the following actions with the form data:

� Manipulate or verify the data

� E-mail the data

� Store the data in a file or database

� Process the data and return some result

There are many ways to construct a form handler, but the usual method is by using a server-side
programming language to create a script that does what you need to the data. Common form
handlers are created in Perl, Python, PHP, or another server-side programming language.

Security is an important issue you should consider when creating form handlers. One of the
earliest, most popular form handlers, formmail.cgi, was found to have a vulnerability that
allowed anyone to send data to the script and have it e-mail the data to whomever the sender

182

Chapter 11: Forms

wanted. This functionality was an instant hit with e-mail spammers who still use unsecured
formmail scripts to send anonymous spam.

Because form-handling scripts can be so diverse (performing different functions, written in dif-
ferent languages), it is hard to give tangible examples here. Use a server-side language you are
comfortable with to create a form handler that does exactly what you want.

If you want a generic form handler to simply store or e-mail the data, you can choose from a few
routes.

Download a handler
Several sites on the Internet offer generic form handlers. One of my favorites is the CGI Resource
Index, http://cgi.resourceindex.com/. This site has several dozen scripts that you can
download and use for your form handling. Keep in mind that most scripts require a processing
language such as Perl or PHP — ensure your server has such prerequisites before downloading
scripts.

Use a script service
Also available are several services that enable you to process your form data through their server
and scripts. You may need such a service if you cannot run scripts on your server or you want a
generic, no-hassle solution.

A partial list of script services is available at the CGI Resource Index, http://cgi.resource
index.com/. From the main page, select Remotely Hosted and browse for a service that meets
your needs.

Summary
This chapter showed you the particulars of HTML forms. It demonstrated how to include them
in your documents and what each form tag can accomplish, and the methods and handlers you
might employ to get the most of the data your forms supply.

The next few chapters cover colors, images, and multimedia, and then delve into HTML niche
formatting and encoding topics. Chapters 16 and 17 provide basic and then advanced coverage
of JavaScript, which can be used for tasks such as automating your forms and documents.

183

Colors and Images

IN THIS CHAPTER
Web Color Basics

Other Means to Specify Colors

The Evolution of Color on the
Web

Using Proper Means to Specify
Colors

Image Formats for the Web

Creating Graphics

Inserting an Image

Image Alignment

Specifying Text to Display for
Nongraphical Browsers

Sizing an Image

Image Borders

Image Maps

The Web is not a black-and-white place. In fact, it never has
been — the Web and HTML language was born with 16 named
colors and blossomed quickly into more than 200 other supported

colors. So, although it had its share of growing spurts, unlike most of the
other information mediums, the Web didn’t have to grow out of a colorless
beginning.

This chapter shows how to use colors with fonts, borders, backgrounds, and
more. It also covers the image tag, which can be used to insert graphical
images into your documents.

Web Color Basics
When the Web was first conceived, most computers were not capable of
displaying the multitude of colors possible today. Most computers in that
era supported a maximum of 16 colors (via Enhanced Graphics Adapter,
or EGA), or a few years later, 256 colors (via Video Graphics Array,
or VGA).

To create an initial, standard color palette, the W3C created a color palette
of 16 named colors: aqua, black, blue, fuchsia, gray, green, lime, maroon,
navy, olive, purple, red, silver, teal, white, and yellow. These color names
are still the only color names that will properly validate against HTML 4.

To accommodate colors in elements, several color and bgcolor attributes
were added to the element tags that support color. For example, the

185

Part I: Creating Content with HTML

following two tags would produce a red background in a document, and text in a white
font, respectively:

<body bgcolor="red">

Note
It bears mentioning at this point that most of the color and bgcolor attributes have been deprecated in
favor of using styles. As such, you should not use them — they are presented here for completeness and
historical context. �

Other Means to Specify Colors
Besides using assigned names to specify colors, there are several other ways to choose specific
colors in your documents, mostly by specifying an exact mix of red, green, and blue that make
up the target color.

You can code the mix of colors to create the color you want to use in two main ways: by denot-
ing a hexadecimal number containing the color values to mix, or by using an rgb()function,
also containing the color values to mix but in decimal format. Either way allows for color values
between 0 (no color) and 255 (full color).

The hexadecimal format typically looks as follows:

#RRGGBB;

The format begins with a pound sign (#), has two hexadecimal digits for each color value, and
ends with a semicolon (;). For the values, the smaller the number, the less the presence of the
color in the mix. To create purple, for example (which is equal parts red and blue), you could
use code similar to the following:

#FF00FF;

Lighter shades of purple can be accomplished by lowering the values. Conversely, you can create
deeper purple shades by increasing the values.

The second function/decimal value method resembles the following:

rgb(rrr,ggg,bbb);

In this case, the function begins with rgb and encapsulates the color values in parentheses in
a comma-separated list. This method also ends with a semicolon. In terms of the preceding
example, you would use the following code with rgb to define purple:

rgb(255,0,255);

186

Chapter 12: Colors and Images

The Evolution of Color on the Web
Within a few years of the Web’s creation, it was clear that more colors, not fewer, were in its
future. To answer the call for a standard palette with more colors, the W3C created a so-called
‘‘Web-safe’’ palette of 216 colors, shown in Table 12-1.

TABLE 12-1

The Web-Safe Palette

000000 #000033 #000066 #000099 #0000CC #0000FF

003300 #003333 #003366 #003399 #0033CC #0033FF

006600 #006633 #006666 #006699 #0066CC #0066FF

009900 #009933 #009966 #009999 #0099CC #0099FF

00CC00 #00CC33 #00CC66 #00CC99 #00CCCC #00CCFF

00FF00 #00FF33 #00FF66 #00FF99 #00FFCC #00FFFF

330000 #330033 #330066 #330099 #3300CC #3300FF

333300 #333333 #333366 #333399 #3333CC #3333FF

336600 #336633 #336666 #336699 #3366CC #3366FF

339900 #339933 #339966 #339999 #3399CC #3399FF

33CC00 #33CC33 #33CC66 #33CC99 #33CCCC #33CCFF

33FF00 #33FF33 #33FF66 #33FF99 #33FFCC #33FFFF

660000 #660033 #660066 #660099 #6600CC #6600FF

663300 #663333 #663366 #663399 #6633CC #6633FF

666600 #666633 #666666 #666699 #6666CC #6666FF

669900 #669933 #669966 #669999 #6699CC #6699FF

66CC00 #66CC33 #66CC66 #66CC99 #66CCCC #66CCFF

66FF00 #66FF33 #66FF66 #66FF99 #66FFCC #66FFFF

990000 #990033 #990066 #990099 #9900CC #9900FF

993300 #993333 #993366 #993399 #9933CC #9933FF

996600 #996633 #996666 #996699 #9966CC #9966FF

999900 #999933 #999966 #999999 #9999CC #9999FF

continued

187

Part I: Creating Content with HTML

TABLE 12-1 (continued)

99CC00 #99CC33 #99CC66 #99CC99 #99CCCC #99CCFF

99FF00 #99FF33 #99FF66 #99FF99 #99FFCC #99FFFF

CC0000 #CC0033 #CC0066 #CC0099 #CC00CC CC00FF

CC3300 #CC3333 #CC3366 #CC3399 #CC33CC #CC33FF

CC6600 #CC6633 #CC6666 #CC6699 #CC66CC #CC66FF

CC9900 #CC9933 #CC9966 #CC9999 #CC99CC #CC99FF

CCCC00 #CCCC33 #CCCC66 #CCCC99 #CCCCCC #CCCCFF

CCFF00 #CCFF33 #CCFF66 #CCFF99 #CCFFCC #CCFFFF

FF0000 #FF0033 #FF0066 #FF0099 #FF00CC #FF00FF

FF3300 #FF3333 #FF3366 #FF3399 #FF33CC #FF33FF

FF6600 #FF6633 #FF6666 #FF6699 #FF66CC #FF66FF

FF9900 #FF9933 #FF9966 #FF9999 #FF99CC #FF99FF

FFCC00 #FFCC33 #FFCC66 #FFCC99 #FFCCCC #FFCCFF

FFFF00 #FFFF33 #FFFF66 #FFFF99 #FFFFCC #FFFFFF

This palette was chosen because it represented the 216 colors that were common between the
PC and MAC platforms — each having its own set of 40 or so reserved colors different from the
other platform.

In today’s computing environments, most user agents on most platforms are capable of pro-
ducing or approximating several million colors. However, you should still be aware of your
audience and their ability to see a particular color before designing your page to use that color
prominently.

In addition to the original 16 named colors, a palette of 150 additional named colors should be
recognized by most browsers. Keep in mind, however, that using the names of the colors in this
palette will cause your documents not to validate against the HTML 4 standard. If you need your
document to validate, stick with the names in the 16-color palette or use the hex codes shown
next to the names in Table 12-2.

Tip
Most image-editing programs include a hexadecimal value field in their color picker or palette dialog. Using
that feature you can easily sample colors from graphics, obtain their hexadecimal value, and include that
value in your styles and other color codes within your HTML documents. �

188

Chapter 12: Colors and Images

TABLE 12-2

Extended Named Color Palette

Name Hex Value Name Hex Value

AliceBlue #F0F8FF DarkMagenta #8B008B

AntiqueWhite #FAEBD7 DarkOliveGreen #556B2F

Aqua #00FFFF DarkOrange #FF8 C00

Aquamarine #7FFFD4 DarkOrchid #9932CC

Azure #F0FFFF DarkRed #8B0000

Beige #F5F5DC DarkSalmon #E9967A

Bisque #FFE4 C4 DarkSeaGreen #8FBC8F

Black #000000 DarkSlateBlue #483D8B

BlanchedAlmond #FFEBCD DarkSlateGray #2F4F4F

Blue #0000FF DarkSlateGrey #2F4F4F

BlueViolet #8A2BE2 DarkTurquoise #00CED1

Brown #A52A2A DarkViolet #9400D3

BurlyWood #DEB887 DeepPink #FF1493

CadetBlue #5F9EA0 DeepSkyBlue #00BFFF

Chartreuse #7FFF00 DimGray #696969

Chocolate #D2691E DimGrey #696969

Coral #FF7F50 DodgerBlue #1E90FF

CornflowerBlue #6495ED FireBrick #B22222

Cornsilk #FFF8DC FloralWhite #FFFAF0

Crimson #DC143C ForestGreen #228B22

Cyan #00FFFF Fuchsia #FF00FF

DarkBlue #00008B Gainsboro #DCDCDC

DarkCyan #008B8B GhostWhite #F8F8FF

DarkGoldenRod #B8860B Gold #FFD700

DarkGray #A9A9A9 GoldenRod #DAA520

DarkGrey #A9A9A9 Gray #808080

DarkGreen #006400 Grey #808080

DarkKhaki #BDB76B Green #008000

continued

189

Part I: Creating Content with HTML

TABLE 12-2 (continued)

Name Hex Value Name Hex Value

GreenYellow #ADFF2F Maroon #800000

HoneyDew #F0FFF0 MediumAquaMarine #66CDAA

HotPink #FF69B4 MediumBlue #0000CD

IndianRed #CD5C5C MediumOrchid #BA55D3

Indigo #4B0082 MediumPurple #9370D8

Ivory #FFFFF0 MediumSeaGreen #3CB371

Khaki #F0E68C MediumSlateBlue #7B68EE

Lavender #E6E6FA MediumSpringGreen #00FA9A

LavenderBlush #FFF0F5 MediumTurquoise #48D1CC

LawnGreen #7CFC00 MediumVioletRed #C71585

LemonChiffon #FFFACD MidnightBlue #191970

LightBlue #ADD8E6 MintCream #F5FFFA

LightCoral #F08080 MistyRose #FFE4E1

LightCyan #E0FFFF Moccasin #FFE4B5

LightGoldenRodYellow #FAFAD2 NavajoWhite #FFDEAD

LightGray #D3D3D3 Navy #000080

LightGrey #D3D3D3 OldLace #FDF5E6

LightGreen #90EE90 Olive #808000

LightPink #FFB6C1 OliveDrab #6B8E23

LightSalmon #FFA07A Orange #FFA500

LightSeaGreen #20B2AA OrangeRed #FF4500

LightSkyBlue #87CEFA Orchid #DA70D6

LightSlateGray #778899 PaleGoldenRod #EEE8AA

LightSlateGrey #778899 PaleGreen #98FB98

LightSteelBlue #B0C4DE PaleTurquoise #AFEEEE

LightYellow #FFFFE0 PaleVioletRed #D87093

Lime #00FF00 PapayaWhip #FFEFD5

LimeGreen #32CD32 PeachPuff #FFDAB9

Linen #FAF0E6 Peru #CD853F

Magenta #FF00FF Pink #FFC0CB

190

Chapter 12: Colors and Images

Name Hex Value Name Hex Value

Plum #DDA0DD SlateGrey #708090

PowderBlue #B0E0E6 Snow #FFFAFA

Purple #800080 SpringGreen #00FF7F

Red #FF0000 SteelBlue #4682B4

RosyBrown #BC8F8F Tan #D2B48C

RoyalBlue #4169E1 Teal #008080

SaddleBrown #8B4513 Thistle #D8BFD8

Salmon #FA8072 Tomato #FF6347

SandyBrown #F4A460 Turquoise #40E0D0

SeaGreen #2E8B57 Violet #EE82EE

SeaShell #FFF5EE Wheat #F5DEB3

Sienna #A0522D White #FFFFFF

Silver #C0C0C0 WhiteSmoke #F5F5F5

SkyBlue #87CEEB Yellow #FFFF00

SlateBlue #6A5ACD YellowGreen #9ACD32

SlateGray #6A5ACD

Using Proper Means to Specify Colors
As previously mentioned, the old HTML tag attributes of color and bgcolor have been depre-
cated. If you use them, your documents will not validate against the HTML 4 standard, and you
run the risk that modern user agents will not interpret the attributes correctly.

Instead, you should use styles.

Many different color style properties can be applied to almost any element in HTML. Of course,
not all elements support color changes, but you might be surprised to learn how many do.

The most common style properties to change an element’s color are color and
background-color. These two properties do what you would expect: change the foreground
color of an element and change the background color of an element, respectively.

As an example, the following tag would cause the text within the paragraph to be rendered in
yellow:

<p style="color: yellow;">

191

Part I: Creating Content with HTML

FIGURE 12-1

Changing an element’s color or background affects the element and possibly its children, but not its
parent.

The following tag would cause the entire document to have a green background:

<body style="background-color: green;">

Many other properties also have color components — that is, arguments that can be used to
affect the color of elements to which the property is applied. These include the following:

� background
� border
� border-color
� border-top, right, bottom, left
� border-top, right, bottom, left-color
� outline
� outline-color
� text-shadow

Each of these properties affects the elements to which it is applied in a slightly different manner.
Using the color attribute of the text-shadow property, for example, affects only the color of
the text shadow, not the element itself, despite how the color attribute might work elsewhere.

192

Chapter 12: Colors and Images

Cross-Ref
More information on using styles to influence backgrounds and colors can be found in Chapter 33. �

Also, keep in mind that using a color property on one element nested within another will change
only the color of the nested element, and perhaps elements nested within it (its children). For
example, the table shown in Figure 12-1 has the following style added to its opening tag:

style="background-color: yellow;"

As you can see, the background of the table has been changed. However, the document back-
ground remains unaffected.

Image Formats for the Web
Most user agents support, to some degree, three graphics file formats: GIF, JPEG, and PNG. The
GIF and JPEG formats have been supported for quite some time (since the origin of the Web),
whereas PNG is relatively new. This section covers the basics of these image formats.

Image compression
All three of these graphics file formats use some form of compression to store your image. Why
is compression important? Uncompressed images can be large — consider Table 12-3, which
compares image dimensions, number of colors, and file size for some sample, uncompressed
images.

TABLE 12-3

Uncompressed Image File Size Comparison by Dimensions and
Number of Colors

Dimensions (in Inches) Colors File Size

1 × 1 2 9K

1 × 1 256 9K

1 × 1 16.7 million 18K

2 × 2 2 16K

2 × 2 256 24K

2 × 2 16.7 million 63K

3 × 3 2 16K

3 × 3 256 49K

3 × 3 16.7 million 139K

193

Part I: Creating Content with HTML

As you can see, with file sizes like this, you would have to limit yourself to mighty tiny images,
or two-color, black-and-white images. Or, you could compress the files.

Note
With the predominance of broadband in the workplace and in homes worldwide, keeping documents and
images small has become an afterthought for designers, not a primary concern. However, the number of
graphics on a page has also increased, in some cases exponentially. The net result is the same: bulky, graph-
ical Web documents that can make browsing the Web a tedious prospect.

When designing pages, you should also consider the new wave of user agents — deployed on handheld
devices such as cell phones. These devices do not possess speedy processors and blazing fast connections. If
you don’t keep your pages slim, or offer specialized content for such devices, you risk alienating this rela-
tively new, but growing, audience.

Although it might seem ‘‘old school,’’ consider using text instead of graphics wherever possible. �

Compression options
When you implement file compression, you either have to throw away some information
about the image or find a way to store the existing information about the image in a more
intelligent manner. GIF files throw away some color information. JPEG files throw away some
information about the image itself. PNG files store the information using a more intelligent
algorithm.

GIF
GIF was the earliest format in use in inline images on the Web. Version 1 browsers could open
GIF images inline, but required that JPEG images be opened out-of-line. GIF uses a compression
scheme — called LZW compression — that predates CompuServe, even though you might see
it called CompuServe GIF. CompuServe implemented LZW compression thinking it was in the
public sphere and then found out it was proprietary. A lot of lawyers sorted it out.

How does GIF work? Simply put, GIF indexes images to an 8-bit palette. The system palette is
256 colors. Before you can save your file in GIF format, the utility you are using simply makes
its best guess at mapping all your colors to one of the 256 colors in an 8-bit palette.

Is a reduction in color depth a problem? That depends. GIF uses dithering to achieve colors
between two colors on the palette. Even with dithering, however, GIF images of a sunset have
stripes of color where a smooth gradation would be more natural. GIF images also tend to have
more cartoonish colors because flesh tones aren’t part of the palette. A GIF image of a drawing
of something like a checkerboard, however, will look just fine.

One distinct advantage the GIF format offers is transparency. This feature enables part of
the feature to appear transparent when rendered, revealing the elements below the figure
through the transparent areas of the figure. As a result, the figure can be more seamlessly

194

Chapter 12: Colors and Images

incorporated into the page’s design because there is no obvious rectangular area encapsulating
the figure.

Note
Transparency in images is covered in the section, ‘‘Using transparency’’ later in this chapter. �

JPEG
JPEG takes a different approach than that of the GIF format. JPEG stands for the Joint Photo-
graphic Experts Group, the name of the group that created the standard. With JPEG, you get
to keep all your colors, but you don’t get to keep all the data about the image. What kinds of
images lend themselves to being compressed with JPEG? Most any image that doesn’t require
absolute detail works well in a JPEG format. Keep in mind that the loss is typically very minor
and unnoticeable to all but those trained in photography or graphic arts. Of course, there are
some images for which you should avoid using JPEG, including text, schematic drawings, and
any line art.

Note
Most graphics packages give the user the option of choosing the level of compression when saving an image
in JPEG format. A good rule of thumb is that the more compression selected, the more detail that is lost in
the final image. Therefore, try to save your JPEG images with a compression level of 30 percent or lower,
unless absolutely necessary. �

Every user agent, version 3 and later, can handle inline JPEGs. JPEGs are also ideal for showing
gradient-filled graphics (when the color changes gradually from one color to another). The same
graphic would suffer enormously under the GIF format because the color depth wouldn’t support
all the in-between colors.

PNG
The Portable Network Graphics, or PNG format, was developed exclusively for the Web and is in
the public domain. The PNG format takes advantage of a clever way to store information about
the image so you don’t lose as much color or image quality. As a lossless format, images in PNG
format tend to be larger than those in the JPEG format.

The adoption of PNG graphics got off to a rocky start because of slow adoption by user agents
and incomplete support for its features, such as levels of transparency. However, the latest
crop of desktop browsers fully support the PNG standard and all its advantages. Keep in mind
that mobile browsers, kiosks, and older browsers still lack adequate PNG support, if they have
it at all.

The PNG format supports a variety of transparency options, but does not have any animation
features.

195

Part I: Creating Content with HTML

Note
Fireworks, a graphics editing package from Adobe, uses the PNG format for its natively saved files. Fire-
works embeds unique metadata in the saved PNG file to keep track of objects and features used in the
image, such as tweening. However, the raw image saved by Fireworks should not be used in your Web
documents. Use the export feature of Fireworks to save a Web-suitable file with the advanced metadata
stripped out. �

Creating Graphics
If you need to create top-notch graphics, the tool of choice among professionals is Adobe Pho-
toshop, available for the Mac and the PC. Freeware and shareware software programs also are
available that perform subsets of the functions performed by Photoshop. Photoshop LE, the
‘‘lite’’ version of Photoshop, ships with many scanners. Photoshop Elements — primarily used
for photo editing — ships with many digital cameras.

Essential functions
What should your graphics package be able to do? For existing images, such as photographs, you
want to sharpen, blur, and perform some special effects on the image (for example, posterize,
swirl, and mosaic). For images you create on the screen, you want to create your own custom
palette (so you can send as few colors as you need). You also need some basic artist tools, such
as a paintbrush, a pencil, a spray can, and a magnifying glass to enlarge parts of the image to see
it better.

Keep in mind that it takes a bit of skill and training to be able to use such features effectively.
If your needs or skill level are meager, consider a lower-end, cheaper, less complicated
package to begin with. However, be sure to pick a package that supports any graphic images
you wish to edit, and one that is able to export to the major Web formats — GIF, JPEG,
and PNG.

Tip
If you aren’t ready to commit to a $500 software package to get all these great functions, you can work
with a number of small, free software packages and services that perform many of the tasks previously
listed. On the Web, you can find sites that turn your TIF file into a GIF, or make your GIF an interlaced
GIF. The trade-off is the time. Finding, learning, and using a variety of small packages to solve all your
imaging needs obviously takes longer than learning one package and using it on your desktop. �

Capturing Images from Other Sites

As you build your documents you may be tempted to borrow images from other sites. The temptation
is common; the Web is rich with content that seems ‘‘just perfect for your use.’’

However, this is not a good practice. In general, unless you clearly own the image in question, you
cannot use it for any purpose. Using an image from another source requires express (usually written)

196

Chapter 12: Colors and Images

permission from the image’s owner. Moreover, keep in mind that the owner of the image and the owner
of the Web page on which it appears may be two different individuals. When it comes down to a suit
in copyright court, you would bear the burden of proving you had clear rights to use the image, and to
use it in the way you did in your documents.

Instead, create your own images or buy suitably licensed images from one of the stock photography
houses, including the following:

� Fotolia (www.fotolia.com)

� Getty Images (www.gettyimages.com)

� iStockphoto (www.istockphoto.com/index.php)

Progressive JPEGs and interlaced GIFs
There was a time on the Web when you had to wait for an image to finish loading before you
knew what it was. Today, you can save your files using the progressive JPEG format or the
interlaced GIF format and watch the image come into focus as it loads.

The advantage to this approach is that a visitor to your site knows roughly what an image is
before the entire image has downloaded. If download times are long because of a poor Internet
connection, for example, the site visitor can actually take a link off the page before the image has
finished loading without missing anything.

Finally, these two image formats are good because the visitor participates in the download time.
Watching the images become clearer as the page downloads gives visitors to the site a sense of
reward for waiting.

Note
Specifying the size of the image in the image tag can also speed up the display of your Web pages, as
it enables the user agent to reserve space for the image and keep rendering, instead of waiting for the
entire image to load before progressing. See the ‘‘Sizing an image’’ section later in this chapter for more
information. �

The sense of ‘‘coming into focus’’ that these types of images provide is the result of the way the
images are stored. Progressive JPEGs and interlaced GIFs download only every eighth line at first,
then every fourth line, then every second line, and then, finally, the odd-numbered lines. As a
result, the image goes from blurry to focused.

You create a progressive JPEG or an interlaced GIF by saving it into this format. In Adobe Pho-
toshop, when you save a file as a GIF, you can choose whether you want the file to be normal
or interlaced (see Figure 12-2). Freeware packages that convert your regular JPEGs and GIFs into
progressive JPEGs and interlaced GIFs are also available.

197

Part I: Creating Content with HTML

FIGURE 12-2

Adobe Photoshop enables you to choose whether you want your GIF to be interlaced or not.

Using transparency
Two of the Web-supported graphics formats, GIF and PNG, support transparency, which enables
parts of images to be completely transparent. Typically, transparency is used to soften the edges
of images, creating an illusion that the image is not rectangular. For example, Figure 12-3
shows an image with a standard opaque background and the same figure with a transparent
background. The image with transparency allows the page background to show through.

Using transparency can open up a document’s design, making it more airy and less ‘‘blocky.’’ It
gives the document a more professional appearance, looking more like a published document
than a Web page of the 1980s.

Different graphics editing programs handle transparency differently. Some assign transparency
to the background layer; some allow you to pick one color that should be transparent; some

198

Chapter 12: Colors and Images

programs allow multiple colors to be transparent. Check the Help file for your editor to
determine how to accomplish transparency.

FIGURE 12-3

Transparency can soften an image, creating the appearance that the image is not rectangular.

Animated images
The GIF format also supports rudimentary animation by showing different frames of an image
one after another. The effect is similar to drawing individual frames of animation on different
pages of a sketchbook and rapidly flipping the pages. Animated GIF images are not supported
by all user agents and should be used sparingly due to their size — the image must store all the
frames of the animation, increasing the size of the image with each new frame.

Some image editors, such as Adobe Fireworks, shown in Figure 12-4, include tools to help create
animated GIF images.

199

Part I: Creating Content with HTML

FIGURE 12-4

Programs such as Fireworks can help you create animated GIFs, in this case the animation of a
spinning CD-ROM.

States/frames pallete

Animation controls

Inserting an Image
Images are inserted into HTML documents using the image tag (). This tag, at a minimum,
takes two attributes, alt and src.

The alt attribute specifies text that should be displayed in lieu of the image in nongraphical
browsers (see the section ‘‘Specifying Text to Display for Nongraphical Browsers’’ later in this
chapter). The src attribute tells the user agent what image file should be displayed. For example,
if you wanted to include the graphic gunsight.jpg in your document, you could use code
similar to the following:

The tag has no closing tag. As such, you should include the slash at the end of the tag
itself.

Cross-Ref
For more information about absolute and relative URLs, see Chapter 8. �

200

Chapter 12: Colors and Images

The src attribute’s value can be any valid URL of an image on the Web — local or remote. Just
as with the anchor tag, you can use absolute or relative URLs to specify the location of the image
to display. The reasons for using either URL are the same as the reasons for using absolute or
relative URLs in anchor tags.

Note
The src attribute of an image tag can also be a server-side program that produces a graphic. For example,
some chart-producing PHP libraries work by calling the PHP script directly from an image tag, similar to:

This allows dynamic means to produce graphics without first having to store the dynamic graphic on the
server. Note that the graphic producing script or program must supply the full header and graphic for the
user agent to properly render the graphic. �

Image Alignment
Most user agents will attempt to display the image exactly where the tag is inserted in the
document. For example, consider the following HTML code and the resulting display shown in
Figure 12-5:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Default Image Placement</title>

</head>
<body >
<p><img src="images/smsight.gif" height="100px" width="100px"
alt="OTG Logo" />Rodent Studios has recently announced that their
highly anticipated game, "Gopher Hunt," will miss the Christmas
season and is now slated for release in early 2008. Gopher Hunt is
the semi-sequel to "Badger Brigade," Rodent Studios smash hit of
last year.<img src="images/smsight.gif" height="100px" width="100px"
alt="OTG Logo" /></p>
<p>Company president Samuel Perry could not be reached for comment,
but all release dates for the game have been removed from the
company website. As you may recall, "Badger Brigade" is one of the
few titles to which On Target Games awarded 5-stars to and the only
game to stay on the best seller list for a whopping 24 week.</p>
<p>We hope this slip isn’t a sign of bigger problem at RS, but will
keep you in the loop.</p>
</body>
</html>

If the user agent cannot fit the image on the current line, it will wrap it to the next line and
follow the paragraph’s alignment and formatting.

Note how the default formatting (at least for Internet Explorer) of the image is to be aligned with
the baseline of neighboring text. This isn’t always ideal. Sometimes you will want to specify the

201

Part I: Creating Content with HTML

image’s alignment as it relates to the text and other objects around it. Image alignment can be
controlled by using the align attribute with the tag. The align attribute can be set to
the values shown in Table 12-4.

Figure 12-6 shows an example of each of these alignment options.

FIGURE 12-5

The browser displays the image at the beginning and the end of the paragraph where the image
tags are located.

Note
Most user agents render items in the order in which they appear in the document. If you are using
left-aligned images, they should appear before the text that they should be positioned to the left of. �

However, the align attribute has been deprecated in favor of using styles for image alignment.
The following CSS properties can be used to help align images:

� text-align — Used in surrounding text, this property aligns the text around an
image (versus aligning the image itself). See Chapter 8 for more information on using the
text-align property.

� float — Floats the image to the right or left of the user agent. The float property allows
text and other objects to wrap next to the image.

� vertical-align — Aligns the image vertically with neighboring text or objects.

202

Chapter 12: Colors and Images

TABLE 12-4

Align Attribute Values

Value Definition

top Align with the top of nearby text or object

bottom Align with the bottom of nearby text or object

middle Align with the middle of nearby text or object

left Align to the left of nearby text or object

right Align to the right of nearby text or object

FIGURE 12-6

The various alignment options for images

Note that with the align left and align right attributes, the image is placed after the first
line of its containing block, unless the image is placed first in the block. This is evident by the
position of the bottom border of the paragraph tag relative to the image. However, this is not
consistent behavior across browsers and shouldn’t be relied upon. Also, some user agents need

203

Part I: Creating Content with HTML

to process the image alignment prior to the text around it. If you are using CSS to position your
images, it is usually best to position them before neighboring text in your HTML document.

Specifying Text to Display for Nongraphical
Browsers
As mentioned repeatedly in this book, it is important not to get caught up in the graphical
nature of the Web, and forget that not all user agents support graphics to the extent that the
Web designer would like. You should use the image tag’s alt attribute to specify text that
should be displayed when the image cannot. For example, consider the following text and the
display shown in Figure 12-7:

<p><img src="images/smsight.gif" height="100px" width="100px"
alt="OTG Logo" style="float: right;"/>Rodent Studios has recently
announced that their highly anticipated game, "Gopher Hunt," will
miss the Christmas season and is now slated for release in early
2008. Gopher Hunt is the semi-sequel to "Badger Brigade," Rodent
Studios smash hit of last year.</p>

FIGURE 12-7

The alt attribute specifies text to use (in this case, ‘‘TG Logo’’) when the image cannot be displayed.

204

Chapter 12: Colors and Images

Some user agents display the alt attribute text when the user mouses over the image. This
enables you to use the alt attribute to include additional information about an image. If you
have a lot of information to convey, consider using the longdesc (long description) attribute,
as well. The longdesc attribute specifies a URL to a document that is to be used as the long
description for the figure. Remember that it is up to the user agent to decide how to enable
access to the long description, if at all.

Sizing an Image
You can specify the size of an image by using the height and width attributes of the image tag.
These attributes accept pixel and percentage values, enabling you to specify the exact size of an
image or a size relative to the current size of the image’s containing object.

Tip
Get in the habit of always using the width and height attributes with your tags. These attributes
enable the user agent to reserve the correct amount of space for the image while it continues to render the
rest of the document. Without these attributes, the user agent must wait for the image to be loaded before
continuing to load the rest of the document. �

For example, suppose you have a large, high-resolution image but want to display a smaller ver-
sion. Using the pixel values of the sizing attributes, you can specify a custom size of the larger
image. Consider the following code and the resulting display in Figure 12-8:

<!-- Full image is 200px square -->
<p>Full Size Image<img alt="Full size image"
src="images/mdsight.gif" width="200px" height="200px" /></p>

<p>Half Size Image<img alt="Half-size image"
src="images/mdsight.gif" width="100px" height="100px" /></p>

Note
It is important to use both the correct height and width when specifying image dimensions in an tag.
If you change the proportions of the figure (by specifying a wrong width or height), you will end up with a
funhouse mirror effect — the image will be stretched or shrunk in one dimension. While this can be used
for effect, it is usually accidental. In addition, although pixel values are the default, it is good practice to
always be specific in your measurements — that is, always include the px when you specify pixel values. �

You might think that using percentage values in the width and height attributes would be an
easier way to scale an image to a percentage of its size. Unfortunately, using percentage values
isn’t quite that intuitive — the result is an image that is the specified percentage of the available
space. For example, for an image in an unconstrained paragraph (user agent screen width), using
a width of 50 percent would be scaled to 50 percent of the screen’s width.

You can specify only one of the dimensions and have the user agent automatically figure out the
other. However, the user agent must then wait for the entire image to load before rendering the
rest of the page, so it is best to specify both dimensions.

205

Part I: Creating Content with HTML

FIGURE 12-8

Using height and width values, you can display an image at any size other than its normal size,
although it is better to use a properly sized image.

Image size attributes should not be used as a substitute for an appropriately sized graphic. If
you need a different sized image, create the appropriate size in an image editor and use the new
image instead. Although you can use the width and height attributes to display an image smaller
than it actually is, the user agent must still download the entire image and then scale the image
accordingly.

Image Borders
You can use CSS styles to create borders around images. Previous versions of HTML supported a
border attribute for the tag, which worked similarly to the table tag’s border attribute.
However, this attribute has been deprecated for use with the image tag. Instead, use styles. CSS
supports quite a few border properties, including the following:

� All-inclusive (color, style, width) attribute setting properties:
� border
� border-top
� border-right

206

Chapter 12: Colors and Images

� border-bottom
� border-left

� Color-setting properties:
� border-color
� border-top-color
� border-right-color
� border-bottom-color
� border-left-color

� Style-setting (type of line used for border) properties:
� border-style
� border-top-style
� border-right-style
� border-bottom-style
� border-left-style

� Width-setting properties:
� border-width
� border-top-width
� border-right-width
� border-bottom-width
� border-left-width

Cross-Ref
More information on CSS borders can be found in Chapter 32. �

For example, to define a 4-pixel-wide border around an entire image, you can use the following
code:

<img alt="A gunsight" src="sight.jpg"
style="border: 4px solid black;" width="50px" height="50px" />

To define a border on just the left and right sides of an image, you would use the following:

<img alt="A gunsight" src="sight.jpg"
style="border-left: 4px solid black;
border-right: 4px solid black;"
width="50px" height="50px" />

To simplify defining a different border on one side of an image, use the border property first
to define a border on all sides and then the appropriate border-side property for the side that
is the exception, overriding the previous setting for that side. For example, to create a border
on all sides of an image except the right, you could specify border-top, border-bottom,
border-left, and border-right properties individually. Or, you could use just border and
border-right:

<img alt="A gunsight" src="sight.jpg"
style="border: 4px solid black;
border-right: none;" width="50px" height="50px" />

207

Part I: Creating Content with HTML

Note
An image placed inside an anchor tag will display with a border that is the color of the appropriate link
status. (See Chapter 8 for more information on links.) The border is designed to highlight the image as a
link, but can have undesired effects on the design of your pages. If you wish to remove the border, use
styles to specify no border for the image tag (that is, border: none). �

Image Maps
Image maps provide a way to map certain areas of an image to actions. For example, a company
might want to provide a map of the United States on its website that enables customers to click
a state to find a local office or store.

There are two types of image maps, client-side and server-side. Client-side image maps rely on
the user agent to process the image, the area where the user clicks, and the expected action.
Server-side image maps rely on the user agent only to tell the server where the user clicked; all
processing is done by an agent on the Web server.

Between the two methods, client-side image maps are generally preferred, as they enable the
user agent to offer immediate feedback to the user (like being over a clickable area) and they
are supported by most user agents. Server-side agents can bog down a server if the map draws
consistent traffic, hides many details necessary to provide immediate feedback to the user, and
might not be compatible with some user agents.

Tip
If you want an image to be clickable and take the user to one particular destination, you don’t have to use
an image map. Instead, embed the image tag ()in an appropriate anchor tag (<a>) similar to the
following:

<img alt="Link to home page"
src="sight.jpg" /> �

Specifying an image map
A client-side image map is generally specified within the contents of a map tag and linked to an
appropriate img tag with the tag’s usemap attribute. For example, to specify a map for an
image, shapes.jpg, you could use this code:

<img alt="Pick a Shape" src="shapes.jpg"
usemap="#map1" />

<map name="map1">
........
</map>

Inside the <map> tags you specify the various clickable regions of the image, as covered in the
next section.

208

Chapter 12: Colors and Images

Specifying clickable regions
To specify an image map, a list of polygonal regions must be defined on an image and referenced
in the HTML document. Three different types of polygons are supported: rectangle, circle, and
free-form polygon.

� rect — Defines a rectangular area by specifying the coordinates of the upper-left and
lower-right corners of the rectangle.

� circle — Defines a circular area by specifying the coordinates of the center of the circle
and the circle’s radius.

� poly — Defines a free-form polygon area by specifying the coordinates of each point of
the polygon.

Note that all coordinates of the image map are relative to the top-left corner of the image
(effectively 0, 0) and are measured in pixels. For example, consider the image shown in
Figure 12-9, depicting a polygon (star), circle, and rectangle. Figure 12-10 shows the same
image but with callouts — the numbered callouts indicate the coordinates necessary to map each
shape.

FIGURE 12-9

An image ready to be used as an image map

209

Part I: Creating Content with HTML

FIGURE 12-10

The points for which coordinates need to be entered for each shape

1

1

2
3 1

2

4

5
6

7

8

9 10

2

The regions that will be used for image mapping are the white areas. The coordinates that are
necessary for each area are as follows:

� Polygon: 123, 54, 142, 110, 201, 111, 154, 147, 171, 203, 123, 169, 75, 204, 91, 147,
45, 110, 104, 109

� Circle: 307, 109, 53

� Rectangle: 156, 289, 364, 384

Tip
Several tools are available to help create image map coordinates. Use your favorite search engine to find a
dedicated piece of software to map regions, or check your graphics program to see if it can create regions
for you. �

In a pinch, you might be able to use your graphics program’s status bar. Most graphics programs
display the current position of the mouse cursor in their status bar — simply point at the area
of the graphic for which you need coordinates and then transpose the numbers in the status bar
into your HTML code.

210

Chapter 12: Colors and Images

Specifying regions using anchor tags
You can specify regions using anchor tags with shape and coords attributes. For example, to
specify the three regions previously outlined, you could use the following:

<map name="map1">
<a href="polygon.html" shape="poly" coords="123,54,142,
110,201,111,154,147,171,203,123,169,75,204,91,147,45,110,
104,109">Polygon Link

Circle Link

Rectangle Link
</map>

Note that the link text helps the user determine where the clickable area links to. The user agent
will typically provide a tooltip or other visual clue using the text.

Specifying regions using area tags
You can also define regions with the area (<area>)tags instead of anchors:

<map name="map1">
<area href="polygon.html"
shape="poly" coords="123,54,142,110,201,
111,154,147,171,203,123,169,75,204,91,147,45,110,104,109"
alt="Polygon Link" />

<area href="circle.html"
shape="circle" coords="307,109,53"
alt="Circle Link" />

<area href="rectangle.html"
shape="rect" coords="156,289,364,384"
alt="Rectangle Link" />

</map>

In the case of the <area> tag, using the alt attribute helps the user determine what the click-
able area leads to, usually via a tooltip when the user mouses over the area.

Putting it all together
Code for a document with a working image map (as outlined in this section) would resemble the
following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Pick a Shape</title>

</head>

211

Part I: Creating Content with HTML

<body>

<map name="map1">
<area href="polygon.html"
shape="poly" coords="123,54,142,110,201,
111,154,147,171,203,123,169,75,204,91,147,45,110,104,109"
alt="Polygon Link" />

<area href="circle.html"
shape="circle" coords="307,109,53"
alt="Circle Link" />

<area href="rectangle.html"
shape="rect" coords="156,289,364,384"
alt="Rectangle Link" />

</map>
</body>
</html>

Note
Image maps can be used for more complex purposes, such as the clickable U.S. map mentioned earlier in
this chapter, or to enable users to obtain more information, such as clicking various buildings on a map, or
individual parts of a complex diagram of a machine. �

Summary
This chapter explained the basics of image formats. You learned the benefits and drawbacks of
each supported image type, as well as how to include and format them in an HTML document,
bringing the basics of multimedia to your documents.

The next chapter builds on the multimedia concept by showing you how to bring full animation,
movies, Flash animations, and other pieces of multimedia to the table. This part of the book
wraps up with a few HTML tidbits (special characters in Chapter 14, and internationalization in
Chapter 15), and then covers scripting (Chapters 16 and 17).

212

Multimedia

IN THIS CHAPTER
Animated Images

Animation and Video Formats,
Plug-ins, and Players

Embedding Media via the
Object Tag

Embedding a Windows Media
Player Using <object>

Embedding YouTube Videos

Adding Sound to Web Pages

Creating Multimedia Files

A Final Word About
Multimedia

In the early days of the Web, the word multimedia caused quite a bit of
excitement. Hearing digital sounds over a previously text-only protocol
was captivating. Today, the word ‘‘multimedia’’ simultaneously brings

users excitement and dismay. The difference in the emotion encountered
is driven by how much control the user has over coming in contact with
the media — live or on-demand broadcast of TV shows is generally a good
thing, whereas a multitude of Flash banners that bring your user agent to a
standstill is a bad thing.

But that still begs the question, ‘‘What is multimedia?’’

Wikipedia (www.wikipedia.org) defines multimedia as ‘‘media that uses
multiple forms of information content and information processing (such as
text, audio, graphics, animation, video, interactivity) to inform or entertain
the (user) audience.’’ So, for the Web, multimedia is anything not other-
wise considered text. This includes graphics (both still and animated), audio,
video, and combinations thereof. Almost any page you visit on the Web
today qualifies as having multimedia content.

I’ve gone through this exercise for two main reasons:

� To help define what this chapter considers to be multimedia

� To illustrate that multimedia on the Web is not a complex and
daunting prospect, but a very easily implemented and common one

The following sections cover the various forms of multimedia along with
specific and general means to incorporate them into your documents.

213

Part I: Creating Content with HTML

Animated Images
Animated images are a simple type of multimedia that incorporates visual animation but has no
audible component. Animated images are built and displayed by frames — individual images
that vary slightly, which, when played back in rapid succession, produce simulated motion.
Think of the process like the flip books you might have created when you were younger, draw-
ing images on the pages and flipping them rapidly to produce an animated effect.

Figure 13-1 shows an example of an animated image: six frames of a spinning CD animation.

FIGURE 13-1

An animation of a spinning CD, animated over six frames.

Cross-Ref
Non-animated images and the image tag () are covered in Chapter 12. �

One downside to animated images is their size. Each frame in the animation increases the size of
the image file incrementally. For example, if you have a 75 KB image and animate its contents

214

Chapter 13: Multimedia

across ten frames, you would create a 750 KB file (75×10 = 750). With animations, it is easy
to get carried away and produce even more frames, which can increase the file to a cumber-
some size.

Animated images need to be stored in a Web-friendly format that supports animation. Today,
only the GIF format fits this bill. You also need an image editing program capable of creating
animated GIF files. Several high-end image editors are capable of creating animated images, and
provide tools that aid in the image’s creation.

As an example, Adobe Fireworks enables you to build an animation frame by frame (using
the Edit � Insert � Frame menu option) and save the result in the animated GIF format.
Figure 13-2 shows the spinning CD animation in Adobe Fireworks; notice the animation
controls to move from frame to frame, and the frame palette showing the state of each frame
and enabling easy access to each one.

FIGURE 13-2

Adobe Fireworks makes building animated images relatively easy.

States/frames pallete

Animation controls

215

Part I: Creating Content with HTML

Tip
If you don’t want to spend the money for an image editor that includes creating animations, consider
using a cheaper image editor to build the frames, and a cheap or even free utility to assemble the
frames into an animated GIF file. Search utility sites such as Tucows (www.tucows.com) or Winfiles
(www.winfiles.com) for suitable utilities.

You add an animated image to your documents in the same way you add any other image, using the image
tag (). Image tag specifics are covered in detail in Chapter 12, but the tag’s basic syntax is shown
here:

<img src="url_to_image" alt="alternative_text"
width="width_of_image" height="height_of_image" /> �

Using the spinning CD image as an example, which is 75 pixels square, you could use the
following tag:

<img src="cdspin.gif" alt="a spinning cd"
width="75px" height="75px" />

You can then use other tags and styles to place the image, control the flow of other objects
around it, add ornamentation, and more.

Animation and Video Formats, Plug-ins,
and Players
The standard user agents do not natively support animation outside of animated images or
video. Instead, they rely on add-on programs, typically known as plug-ins, to bring the content
to the user. The content is embedded in Web documents via tags with URLs pointing to
the actual media, just like other objects and content. However, when the page is decoded
and rendered by the user agent, an appropriate plug-in is required to play, view, or other-
wise do something useful with the content. The process resembles the diagram shown in
Figure 13-3.

The process generally proceeds like this:

1. The user agent encounters an <object> tag.

2. The user agent tries to determine the type of media encased in the tag via the MIME
type — either specified in the type attribute or inferred from the media file’s extension
(.avi, .mpg, and so on). If the MIME type cannot be determined, then the user agent
won’t know what to do with the media and cannot play/display it.

3. Once the MIME type has been determined, the user agent compares the type against the
players it already knows about. If an appropriate player plug-in is found, it is loaded to
play/display the media.

4. If an appropriate player isn’t already available, the <object> tag is again examined, this
time for an appropriate player to acquire for playback of the media. If a URL is supplied,

216

Chapter 13: Multimedia

then the user is prompted to download the player. If the user responds in the affirmative,
the player is downloaded and used to play/display the media.

5. If for any reason this process fails — invalid or missing MIME types, user refused to
download player, and so on — the user agent will generally display a placeholder (as it
does for missing or broken graphic links) and will not play the media.

For example, if you haven’t installed the Flash plug-in and you load a page with Flash content,
you can install the Flash plug-in quickly by following the prompts. However, not every plug-in
works as well as Flash.

FIGURE 13-3

The process a user agent goes through when unknown content is encountered.

<object> tag Display

Does a local
player for

content exist?

Does
<object>
tag have link

to player?

Load
local

player

Prompt user to
retrieve and
install player

User
agent

Yes

Display
multimedia

in player/with
plug-in

Can MIME type
of content be
determined?

Yes

No

No
No

yes

Cannot display
multimedia (display

appropriate placeholder
if possible)

Handling of multimedia
(via MIME type and

appropriate plug-in/player)

Tip
More information on inserting objects into your document can be found in the HTML standards at:
www.w3.org/TR/html401/struct/objects.html. �

Popular formats and players (plug-ins)
Four animation and video players dominate the Web space today. Windows Media Player’s capa-
bilities have also been enhanced over the years to enable it to play a lot of content that would

217

Part I: Creating Content with HTML

otherwise have taken a dedicated player. The following sections detail the four dominant multi-
media programs used for the Web.

Flash
Flash, which has become arguably the most prevalent multimedia format, began life as a plug-in
for something called FuturePlayer. FuturePlayer was purchased by Macromedia, which made
significant refinements to the original product. Macromedia had already enjoyed reasonable
success with its own Shockwave format, which was quite similar to Flash files but was generated
by Macromedia Director. Macromedia did a good job of commingling the two formats, and
eventually Shockwave pretty much disappeared in favor of Flash. Today’s Flash can display
MP3-based video and sound along with vector graphics, and can harness data sources from
relational databases and XML.

In fact, Flash has become a serious application platform in its own right, enabling developers to
display changing data in real time.

RealOne
RealOne is a media player that reads video and audio files. Real, Inc., the developer of RealOne,
was one of the first companies to introduce the concept of streaming audio to desktops.
Streaming media (audio and video) is sent in real time through special servers. If you’re
doing professional-level streaming media, you’ll want to check whether your host provider
(if you’re using one) offers access to a Real Audio server. If you’re planning on developing
for RealOne, you can find comprehensive software development kits (SDKs) and tutorials at
www.realnetworks.com/support/index.html.

QuickTime
QuickTime has distinguished itself by consistently raising the bar on video quality. QuickTime
has long been a staple in the Apple world, but its quality is so good it has made inroads into the
Wintel world too.

YouTube
More of a platform than format or player, YouTube has become the most popular way to embed
video in documents. Using Flash, YouTube provides a stable and known platform for displaying
and controlling video. Using YouTube to embed video is covered later in this chapter.

Windows Media Player
Windows Media Player has a huge installed base because it is included as part of the Win-
dows operating system. Its functionality is virtually identical to RealOne, offering video and

218

Chapter 13: Multimedia

music playing capabilities. To properly display Windows Media Player files, you should
use the ASX markup language, which is an XML-based proprietary language developed by
Microsoft.

When a user clicks an ASX link, the browser spawns an instance of the Windows Media Player.
Consider the following link:

Link to Streaming Content

This links to the following file and opens up a Media Player:

<asx version = "3.0">
<title> ASX Demo</title>
<entry>
<title>Gopher Hunt Theme Song</title>
<author>Rodent Studios</author>
<copyright>(c)2009 Rodent studios</copyright>
<ref href="mms://windowsmediaserver/path/mysong.asf" />

</entry>
</asx>

For the specifics of what the various elements mean in an ASX file, go to http://msdn2.
microsoft.com/en-us/library/ms910265.aspx.

Embedding Media via the Object Tag
The best way to embed multimedia in your documents is via the object tag (<object>). This tag
embeds a link to media in your document and specifies what a user agent needs in order to play
the media (plug-in/player).

An example of an object tag follows; it is configured to embed a Flash file named
myFlashMovie.swf:

<object
classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase=

"http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#
version=9,0,45,0"
width="550" height="400" id="myMovieName">
<param name=movie value="myFlashMovie.swf" />
<param name=quality value=high />
<param name=bgcolor value=#FFFFFF />

</object>

219

Part I: Creating Content with HTML

The object tag includes a wealth of information for the user agent and plug-in alike. The clas-
sid and codebase attributes specify information about which plug-in is necessary to play the
content — the codebase attribute includes the player/plug-in necessary to play the content,
including the specific (or usually minimum) version of the plug-in.

Where do you get the appropriate information for the classsid and codebase attributes? Usu-
ally from the vendor’s website. For example, the following page from Adobe’s TechNote site
outlines all the attributes for the <object> and <embed> tags (although the version code is a
bit dated): www.adobe.com/go/tn 12701.

Note
Embedding media in your document via <object> or <embed> tags causes the media to display within
your document alongside other HTML objects. The other method of including media is simply linking to it
via a standard anchor. For example, to link to a media file — causing it to display exclusively in the user
agent window — you could use a tag similar to this:

A Flash File

When the user clicks the link, the Flash file (myFlashFile.swf) will load in the user agent window and
play according to the player’s defaults. This technique can be used for most media formats that can be
played by the players typically installed on an end user’s machine (wav, mpg, avi, aiff, and so on).

However, this method relies upon the user agent finding a suitable player based solely on the extension
(wav, mpg, avi, aiff, and so on) of the media file. To help the user agent, consider adding a type
attribute that directly specifies the media type, similar to the following:

<a href="myFlashFile.swf"
type="application/x-shockwave-flash">
A Flash File �

Table 13-1 shows the other attributes that you can use with the object tag. The specific attributes
used depend on your specific needs and the plug-in being used.

For extra functionality and customization of the user agent’s handling of the media, you can
embed parameter tags (<param>) within the object tag. The parameter tags have the following
format:

<param name="name_of_parameter" value="value_of_parameter" />

These tags are used to set the value of parameters that the plug-in/player understands. For
example, the Flash Player supports a parameter named loop, which controls whether the movie
will play only once or multiple times. To set the Flash animation to loop, you would include the
following parameter tag:

<param name="loop" value="true" />

220

Chapter 13: Multimedia

TABLE 13-1

Attributes of the Object Element

Attribute Name HTML Standard and Description

archive (optional) (HTML 4.01) A space-separated list of URIs for archives of
classes and resources to be preloaded. Using this attribute can
significantly improve the loading speed of an object.

classid (optional) (HTML 4.01) Specifies the location of the object’s
implementation by URI. Depending on the type of object
involved, it can be used with, or as an alternative to, the data
attribute.

codebase (optional) (HTML 4.01) Indicates the base URI for the path to the object
file. The default is the same base URI as the document.

codetype (recommended) (HTML 4.01) Specifies the content type of data expected. If this
is omitted, the default is the same as the type attribute.

data (optional) (HTML 4.01) Specifies the location of the object’s data. If given
as a relative URI, it is relative to the code-based URI.

height (optional) (HTML 4.01) Specifies the initial height in pixels or percentages
of the element.

hspace (optional) (HTML 4.01) Defines the number of pixels on the horizontal
sides of the element.

id (optional) (HTML 4.01) (CSS enabled) Formats the contents of the tag
according to the style ID. Note: IDs must be unique within a
document.

name (optional) (HTML 4.01) The name attribute assigns the control name to
the element.

standby (optional) (HTML 4.01) This specifies a message that is shown to a user
while the object is loading.

style (optional) (HTML 4.01) (CSS enabled) Formats the contents of the element
according to the listed style.

type (recommended) (HTML 4.01) Indicates the content type at the link target.
Specify the type as a MIME-type. This attribute is case
insensitive.

vspace (optional) (HTML 4.01) Defines the number of pixels on the vertical sides
of the element.

width (optional) (HTML 4.01) Specifies the initial width in pixels or a
percentage of the element.

221

Part I: Creating Content with HTML

When the <object> Tag Is Not Supported
A handful of user agents do not support the relatively new <object> tag. These user agents typically
do support an older embedded media tag, embed (<embed>). This deprecated tag has the following
syntax when embedding a Flash file named myFlashMovie.swf:

<embed src="myFlashMovie.swf"
quality="high" bgcolor="#FFFFFF" width="550" height="400"
name="myMovieName" align="" type="application/x-shockwave-flash"
pluginspage="http://www.macromedia.com/go/getflashplayer">

</embed>

The embed tag contains similar information to that in the <object> tag and its <param> tags, but
in attribute format — that is, the options are embedded as attributes within the <embed> tag, not
as children tags. As with the <object> tag, <embed> supports a variety of attributes and values,
depending on the desired use and player/plug-in being utilized. The preceding example uses the
attributes listed in the accompanying table.

Attribute Definition

src URL to the media file

quality (optional) Quality setting at which the movie should be played (not
supported by all plug-ins)

bgcolor (optional, not supported with all
players/plug-ins)

Background color that should be used for the media

width (optional, but should be included) Width of the media file

height (optional, but should be included) Height of the media file

name Name used to identify the particular embed tag

type MIME type of the media file

pluginspage URL to a page to download the appropriate player/plug-in

Because the <embed> tag has been deprecated, direct use of this tag will cause your documents not
to validate. However, you can use the following technique to include both an <object> tag and
an <embed> tag to support a wider range of user agents. Simply encase the <embed> tag within the
<object> tag as shown:

<object
classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase=
"http://download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=9,0,45,0"
width="550" height="400" id="myMovieName">

222

Chapter 13: Multimedia

<param name=movie value="myFlashMovie.swf" />
<param name=quality value=high />
<param name=bgcolor value=#FFFFFF />
<embed src="myFlashMovie.swf"
quality="high" bgcolor="#FFFFFF" width="550" height="400"
name="myMovieName" align=""
type="application/x-shockwave-flash"
pluginspage="http://www.macromedia.com/go/getflashplayer">

</embed>
</object>

This method effectively hides the <embed> tag from validation programs — they do not check
the children tags embedded within the <object> tag. Older user agents still find and use the
<embed> tag, whereas modern user agents will use the <object> tag instead, ignoring the
<embed> tag.

Embedding a Windows Media Player Using
<object>
Earlier in this chapter, I discussed using ASX for delivering media via Windows Media Player.
That method spans an instance of the player to play the media. Using the <object> tag, you
can also embed the player in your Web pages.

Caution
To work, this method relies on your entire target audience running Windows, as it utilizes Windows
ActiveX controls to integrate with Windows Media Player. No Windows, no ActiveX controls, no interface
into Windows Media Player. In addition, if a user agent doesn’t fully support ActiveX, it won’t be able to
take full advantage of the features described in this section. In other words, if your audience isn’t running
Internet Explorer, you can’t bank on the full feature set of the embedded Media Player video.

It’s generally more useful to port your media into a Flash-friendly format and wrap it with one of many
Flash projector scripts, if necessary, to give it appropriate playback controls. �

The <object> tag format should be familiar by this point. The following is a sample of a tag
supporting an embedded Windows Media Player instance:

<object id="video" width="320" height="240"
classid="CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6"
codebase="http://activex.microsoft.com/activex/controls/

223

Part I: Creating Content with HTML

mplayer/en/nsmp2inf.cab#Version=6,4,5,715"
standby="Loading Microsoft Windows Media Player components..."
type="application/x-oleobject">
<param name="URL" value="GamePLaySample.avi" />
<param name="SendPlayStateChangeEvents" value="True" />
<param name="AutoStart" value="True" />
<param name="uiMode" value="mini" />
<param name="Volume" value="20" />
<param name="CurrentPosition" value="0" />
<param name="PlayCount" value="1" />
<embed type="application/x-mplayer2"
pluginspage=
"http://www.microsoft.com/Windows/Downloads/Contents/MediaPlayer/"
width="320" height="240"
src="GamePlaySample.avi"
autostart="True"
showcontrols="True" showstatusbar="False"
showdisplay="False" autorewind="True">

</embed>
</object>

Note that the codebase line is broken into two lines in this listing because of the limitations of
the printed page. In your code, it should be on one line.

The codebase and classid shown in the preceding listing are specific to Windows Media
Player 6, a stable player that is a common denominator in older user agents. Additional pairs
of parameters for other versions and other useful information can be found on the following ref-
erence site: www.jakeludington.com/project_studio/20051015_embedding_windows
_media_player_wma.html.

The Windows Media Player object takes a wide variety of parameters, some of which appear in
the preceding listing, but most are shown in Table 13-2.

Note
Many additional parameters and control settings are available for Windows Media Player, but not
all of them are necessarily suitable for delivering media over the Web. Visit Microsoft’s Windows
Media Developer Center site for more information about Windows Media Player settings and controls:
http://msdn2.microsoft.com/en-us/windowsmedia/default.aspx. �

Figure 13-4 shows examples of each of the four user interface settings. Note that the user inter-
face, if enabled, occupies a certain amount of the object’s area. This amount is determined largely
by the skin being used by Windows Media Player on the user’s machine. However, if you intend
to enable the interface to any degree, you should compensate by adjusting the object’s height to
avoid compacting the media.

224

Chapter 13: Multimedia

TABLE 13-2

Parameters for a Windows Media Player Object

Parameter Value Type Use/Effect

AutoStart True/False Controls whether the media will begin playing
automatically upon loading

BaseURL URL Specifies the base URL to be used for any scripting
commands embedded in the media

CaptioningID HTML element
ID

The ID of the element supplying alternate captioning
for the media, if any

CurrentMarker Numeric Specifies the marker number where the media should
begin playing. Specifying 0 starts the media from the
beginning.

CurrentPosition Numeric
(seconds)

Specifies the timecode (in seconds) where the media
should begin playing. Specifying 0 starts the media
from the beginning.

EnableContextMenu True/False Controls whether the right-click context menu will be
available to the user to aid in controlling playback,
etc.

Enabled True/False Controls whether the Windows Media Player controls
are enabled at all

FullScreen True/False Controls whether playback occurs in full-screen mode

Mute True/False Controls whether the volume is muted on initial
playback

Playcount Numeric Specifies how many times the media will play. The
minimum value for this parameter is 1.

Rate Numeric The relative rate of speed at which the media will
play. The value specified is multiplied by 1, so
specifying .5 will result in half-speed, while specifying
2 results in double-speed.

StretchToFit True/False Specifies whether the media should be stretched to fit
the player window, if/when the player window is
larger than the media size

UIMode invisible, none,
mini, full

Specifies the type and size of the player controls to
display with the player. See Figure 13-4 for an
example of each.

continued

225

Part I: Creating Content with HTML

TABLE 13-2 (continued)

Parameter Value Type Use/Effect

URL URL The location of the media file to play

Volume Numeric
(percentage)

The initial setting of the player’s volume. The default
value is the last setting used by the local user. Values
specified with this parameter are treated as a
percentage from 0 (no volume) to 100 (full volume).

FIGURE 13-4

The various UIMode settings control how much of the Windows Media Player interface is dis-
played for the user to control playback of the media.

Embedding YouTube Videos
One popular and easy way to add movies to your documents is to use YouTube as the medium.
Adding a YouTube video to your documents is very easy thanks to YouTube’s embed display,
which accompanies all videos on their site. A sample video with the embed code is shown in
Figure 13-5.

226

Chapter 13: Multimedia

FIGURE 13-5

Every video on YouTube has accompanying code to embed the video in a document.

embed code

Note
Keep in mind that YouTube videos require the Flash plug-in, so your audience needs to have the plug-in
installed to see the video. �

The embed code resembles the following:

<object width="425" height="344">
<param name="movie"

value="http://www.youtube.com/v/XT6XPHXK4e4&hl=en&fs=1">
</param>
<param name="allowFullScreen" value="true">
</param>
<param name="allowscriptaccess" value="always"></param>
<embed src="http://www.youtube.com/v/XT6XPHXK4e4&hl=en&fs=1"
type="application/x-shockwave-flash" allowscriptaccess="always"
allowfullscreen="true" width="425" height="344"></embed>
</object>

227

Part I: Creating Content with HTML

Note
If you use the YouTube embed code in your documents, you should be aware that the documents will no
longer validate against HTML 4. That’s because the code needs to work on most browsers and as such
employs loose HTML 4 code. �

To embed a YouTube video, follow these steps:

1. Locate the video on YouTube and navigate to its page.

2. Select the code in the embed field and copy it to the clipboard.

3. Paste the code into your document where you want the video to appear.

You can customize the look of the video by clicking the gear next to the embed field and choos-
ing from a handful of options, like border color and size of the video, before copying the embed
code to your document.

You can also add parameters to the URL contained in the <param> and <embed> tags to cause
the video to autoplay when the page is loaded or to start at a particular place in the video.

To cause the video to autoplay, add &autoplay=1 to the end of the URL. For example,

www.youtube.com/v/XT6XPHXK4e4&hl=en&fs=1

becomes

www.youtube.com/v/XT6XPHXK4e4&hl=en&fs=1&autoplay=1

Tip
The number used with the autoplay parameter also controls how many times the video will play. For
example, using 2 (instead of 1) will cause the video to play two times without user intervention. �

To cause the video to start at a designated place, use the &start parameter, with the number of
seconds into the video as an argument. For example, to start the video 10 seconds into it, add
&start=10 to the end of the URL.

Adding Sound to Web Pages
There are two deprecated ways to add sound files to Web pages. Generally speaking, you
shouldn’t use these methods, but if you need to add a MIDI or WAV file to your page and can’t
embed either into a player supported by <object>, you might find it necessary to use one.

The first method is using the background sound tag (<bgsound>). This tag has the following
format:

<bgsound src="url_to_sound_file" loop="times_to_play" />

228

Chapter 13: Multimedia

This tag causes the specified sound file to be delivered to the user agent and played the number
of times specified by the loop attribute.

The other method is to use the <embed> tag as previously described in this chapter.

Note
Remember that the media file delivered to the user agent must be supported on that platform; that is, the
target platform must have a player or plug-in to play the file. Also, using the <bgsource> tag doesn’t give
you the chance to specify a player that the user agent can retrieve, if necessary. �

Creating Multimedia Files
Creating multimedia files takes dedicated applications geared to create the appropriate file for the
format you want to use. For example, creating Flash files requires the Adobe Flash application.
QuickTime file production requires a suitable video encoder for MPEG or other QuickTime for-
mats. RealOne is one of the few formats that requires a bit more work and dedicated servers to
deliver the media files.

Unfortunately, most of the creation programs are fairly expensive. There are less capable video
creation tools on the market, most of which are sold to translate and edit video from personal
camcorders and the like. While these programs can create video that can be used on the Web,
the file sizes are usually too large to be practical. If you want to develop directly for the Web,
look for a professional program such as Adobe Premier to do your video editing and creation.

Note
Many files output their content in Flash format and/or can be used to create original Flash content. If you
already have a 3D or animation program, check its export options for Flash format. In addition, search the
utility sites for Flash-capable creation tools; more are cropping up every day. �

A Final Word About Multimedia
Keep in mind that most multimedia is not natively supported by user agents — specific plug-ins
or operating system players are required to play a multimedia file delivered over the Web. When
a user’s system has the correct player installed, the embedded or otherwise delivered multimedia
can be played rather seamlessly. However, if users don’t have the right player software installed,
you are asking them to go through one more step to view your content — a step they might not
want to take.

Although the <object> tag can be used to deliver almost any content and a link to an
appropriate player, consider sticking to the most popular players — Flash, QuickTime, RealOne,
and Windows Media Player — and porting your content to formats supported by those
players.

229

Part I: Creating Content with HTML

The best route today, in this author’s opinion, is to encapsulate your multimedia content in Flash
files whenever possible. Most user agents will already have the Flash Player installed and can
instantly play your content.

Also, avoid using anchor tags to link to the media file(s). Use the <object> and <embed> tags
to embed the media in a properly validated HTML document.

Last, remember that the best kind of multimedia to use on your site might be no multimedia at
all, which saves the user the aggravation of encountering unwanted multimedia, downloading
unwanted plug-ins, and so on.

Summary
This chapter showed how easy it is to embed multimedia into your Web documents, and what
concerns you need to be aware of in doing so. You saw how using the <object> tag is easy and
flexible and that with it you can deliver just about any content. You also learned about other tags
that have been deprecated but can still be used in a pinch.

The next two chapters wrap up the HTML coverage with special characters and internationaliza-
tion. The final two chapters in this section (Chapter 16 and 17) cover scripting.

230

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 231

Special Characters

IN THIS CHAPTER
Understanding Character

Encodings

Special Characters

En and Em Spaces and Dashes

Copyright and Trademark
Symbols

Currency Symbols

‘‘Real’’ Quotation Marks

Arrows

Accented Characters

Greek and Mathematical
Characters

Other Useful Entities

As its roots are firmly grounded in plain text, HTML needs to be able
to display a wide range of characters — many that cannot be typed
on a regular keyboard. Language is rich with extended and accented

characters, and there are many reserved characters in HTML.

The HTML specification defines many entities — specific codes — to insert
special characters. This chapter introduces you to the concept of entities and
lists the various entities available for use.

Note
The W3C website is a good source of information about entities. The HTML
entities are listed at www.w3.org/TR/html4/sgml/entities.html. �

Understanding Character
Encodings
Character encoding at its simplest is the method that maps binary data to its
proper character equivalents. For example, in a standard American English
document character, 65 is matched to a capital A.

Most English fonts follow the American Standard Code for Information Inter-
change (ASCII) coding. So when Web designers insert a capital A, they can
be assured that users will see the appropriate ‘‘A’’ in their user agent.

There are, of course, plenty of caveats to that statement. The document must
be encoded as English, the specified font must also be encoded as English,
the font must be an alphanumeric font capable of producing the letter, and
the user agent must not interfere with either encoding.

231

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 232

Part I: Creating Content with HTML

Note
Document encoding is typically passed to the user agent in the Content-Type HTTP header, such as the
following:

Content-Type: text/html; charset=EN-US

However, some user agents don’t correctly handle encoding in the HTTP header. If you need to explicitly
declare a document’s encoding, you should use an appropriate meta tag in your document, similar to the
following:

<meta http-equiv="Content-Type" content="text/html; charset=EN-US"> �

What happens when any of the necessary pieces are different or changed from what they were
intended to be? For example, what if your document is viewed in Japan, where the requisite user
agent font is in Japanese instead of English? In those cases, using the proper document encoding
helps ensure that the right characters are represented.

Most fonts have international characters encoded in them as well as their native language char-
acter set. When a non-native encoding is specified, the user agent tries to use the appropriate
characters in the appropriate font. If appropriate characters cannot be found in the current font,
then alternative fonts can be used.

However, none of this can be accomplished if the document does not declare its encoding. With-
out knowing the document encoding, the user agent simply uses the character that corresponds
to the character position arriving in the data stream. For example, a capital A is translated to
whatever character is in the 65th place in the font table the user agent is using.

Cross-Ref
More information on character encoding and internationalizing documents can be found in Chapter 15. �

Special Characters
Several characters have special meaning in HTML. For example, the less than symbol (<) signals
the beginning of a tag. As such, you cannot use that character in normal text. Instead, you must
encode the character using a means that user agents understand. Such codes are referred to as
entities. When the user agent renders a document and encounters an entity, the entity is rendered
as the correct character.

Entities in HTML begin with an ampersand (&), end with a semicolon (;), and contain a numeric
code or mnemonic phrase in between.

Numerically coded entities can use decimal or hexadecimal numbers. Either must be preceded
by a pound sign (#). Hexadecimal numbers also need to be preceded by an x. For example,
a nonbreaking space is character number 160. The following entity in decimal references this
character:

232

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 233

Chapter 14: Special Characters

The following entity in hexadecimal also references character 160:

Mnemonic entities use a few characters to specify the entity — the characters usually are an
abbreviation or mnemonic representation of the character they represent. For example, the
following entity represents a nonbreaking space:

Other essential entities are listed in Table 14-1.

TABLE 14-1

Essential Entities

Decimal Entity Mnemonic Entity Character

" " Double quote mark

& & Ampersand

< < Less than symbol

> > Greater than symbol

 Nonbreaking space

Additional special-use characters are covered in the following sections.

Note
Specifying special characters via their mnemonic codes is the only way to ensure that the correct character
is used by the user agent. Using the decimal or hexadecimal equivalent only instructs the user agent to use
the corresponding character at that place in the current font map — it doesn’t guarantee that the character
is the one you intended. However, the user agent will use the character mapped to the mnemonic, despite
its position in the font map.

All that said, remember that entity use is not a substitution for correctly internationalizing your documents.
Refer to Chapter 15 for more information. �

En and Em Spaces and Dashes
The en space and dash characters got their name from their relative size; they are as wide as a
capital N. Likewise, em characters are as wide as a capital M.

These characters have specific uses in the English language:

� En spaces are used when you need a larger space than a normal space provides. For
example, en spaces can be used between street numbers and street names for clarity (e.g.,
123 Main Street).

233

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 234

Part I: Creating Content with HTML

� Em spaces are used to separate elements such as dates and headlines, figure numbers and
captions, and so on (e.g., Figure 02 A simple prompt).

� En dashes are used instead of hyphens in constructs such as phone numbers, element num-
bering, and so on.

� Em dashes are used grammatically when you need to divide thoughts in a sentence (e.g.,
‘‘The excuse was nonsense — at least that’s how it seemed to me.’’).

Table 14-2 lists the entities for en and em elements.

TABLE 14-2

En and Em Entities

Decimal Entity Mnemonic Entity Character

    En space

    Em space

– – En dash

— — Em dash

Copyright and Trademark Symbols
Copyright and trademark symbols are special symbols that indicate a legal relationship between
individuals (or companies) and text.

The copyright symbol (©) is used to indicate that someone has asserted certain rights on
written material — text included with the symbol usually indicates which rights. For example,
many written works include the following phrase as a copyright: ‘‘Copyright © 2009. All rights
reserved.’’

The trademark and registered marks (™ and ®) are used to indicate that a particular word or
phrase is trademarked — that is, marked (trademarked) or registered for unique use by an indi-
vidual or company. For example, ‘‘Windows’’ is a registered trademark of Microsoft, and ‘‘For
Dummies’’ is a registered trademark of Wiley Publishing.

Note
Trademark and registered trademark symbols are typically superscripted after the word or phrase to which
they apply. As such, you should generally use each within superscript (<sup>) tags. �

Table 14-3 lists the entities for copyright, trademark, and registered trademark symbols.

Note that some fonts include the trademark symbol. However, because the symbol is actually
two characters, it is included as an exception, not a rule. As such, you shouldn’t rely on an entity
to display the symbol, but use specific small and superscript font coding such as the following:

<small>TM</small>

234

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 235

Chapter 14: Special Characters

TABLE 14-3

Copyright, Trademark, and Registered Entities

Decimal Entity Mnemonic Entity Character

© © Copyright symbol

™ ™ Trademark symbol

® ® Registered trademark symbol

Note
Use of styles is preferred over the use of the <small> tag. �

Currency Symbols
There are many currency symbols, including the U.S. dollar ($), the English pound (£), the
European euro (¤), and the Japanese yen (¥). There is also the general currency symbol (¤).
Table 14-4 lists many of the most common currency symbols.

TABLE 14-4

Currency Entities

Decimal Entity Mnemonic Entity Character

¢ ¢ The cent symbol (¢)

£ £ English pound

¤ ¤ General currency

¥ ¥ Japanese yen

€ € European euro

Note that the dollar symbol ($) is typically ASCII character 24 (in U.S. fonts) and can be
accessed directly from the keyboard.

‘‘Real’’ Quotation Marks
Real quotation marks, used in publishing, do not exist on a standard keyboard. The quote marks
available on the keyboard (′′ and ′) are straight quotes; that is, they are small, superscripted,
vertical lines.

235

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 236

Part I: Creating Content with HTML

Quote marks used in publishing typically resemble the numbers 6 and 9 — that is, dots with a
serif leading off of them. For example, the following sentence is set off with real quote marks:

‘‘This sentence is a real quote.’’

Table 14-5 lists the entities for real quotes.

TABLE 14-5

Quote Mark and Apostrophe Entities

Decimal Entity Mnemonic Entity Character

‘ ‘ Left/Opening single quote

’ ’ Right/Closing single quote and apostrophe

“ “ Left/Opening double quote

” ” Right/Closing double quote

Arrows
A variety of arrow symbols are available as entities. Table 14-6 lists these entities.

TABLE 14-6

Arrow Entities

Decimal Entity Mnemonic Entity Character

← ← Left arrow

↑ ↑ Up arrow

→ → Right arrow

↓ ↓ Down arrow

↔ ↔ Left right arrow

↵ ↵ Down arrow with corner leftwards

⇐ ⇐ Leftwards double arrow

⇑ ⇑ Upwards double arrow

⇒ ⇒ Rightwards double arrow

⇓ ⇓ Downwards double arrow

⇔ ⇔ Left right double arrow

236

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 237

Chapter 14: Special Characters

Accented Characters
Many accented character entities are available in the HTML standard. These characters can be
used in words such as résumé. Table 14-7 lists the accented character entities.

TABLE 14-7

Accented Character Entities

Decimal Entity Mnemonic Entity Character

À À Latin capital letter A with grave

Á Á Latin capital letter A with acute

Â Â Latin capital letter A with circumflex

Ã Ã Latin capital letter A with tilde

Ä Ä Latin capital letter A with diaeresis

Å Å Latin capital letter A with ring above

Æ Æ Latin capital letter AE

Ç Ç Latin capital letter C with cedilla

È È Latin capital letter E with grave

É É Latin capital letter E with acute

Ê Ê Latin capital letter E with circumflex

Ë Ë Latin capital letter E with diaeresis

Ì Ì Latin capital letter I with grave

Í Í Latin capital letter I with acute

Î Î Latin capital letter I with circumflex

Ï Ï Latin capital letter I with diaeresis

Ð Ð Latin capital letter ETH

Ñ Ñ Latin capital letter N with tilde

Ò Ò Latin capital letter O with grave

Ó Ó Latin capital letter O with acute

Ô Ô Latin capital letter O with circumflex

Õ Õ Latin capital letter O with tilde

Ö Ö Latin capital letter O with diaeresis

Ø Ø Latin capital letter O with stroke

continued

237

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 238

Part I: Creating Content with HTML

TABLE 14-7 (continued)

Decimal Entity Mnemonic Entity Character

Ù Ù Latin capital letter U with grave

Ú Ú Latin capital letter U with acute

Û Û Latin capital letter U with circumflex

Ü Ü Latin capital letter U with diaeresis

Ý Ý Latin capital letter Y with acute

Þ Þ Latin capital letter THORN

ß ß Latin small letter sharp s = ess-zed

à à Latin small letter a with grave

á á Latin small letter a with acute

â â Latin small letter a with circumflex

ã ã Latin small letter a with tilde

ä ä Latin small letter a with diaeresis

å å Latin small letter a with ring above

æ æ Latin small letter ae

ç ç Latin small letter c with cedilla

è è Latin small letter e with grave

é é Latin small letter e with acute

ê ê Latin small letter e with circumflex

ë ë Latin small letter e with diaeresis

ì ì Latin small letter i with grave

í í Latin small letter i with acute

î î Latin small letter i with circumflex

ï ï Latin small letter i with diaeresis

ð ð Latin small letter eth

ñ ñ Latin small letter n with tilde

ò ò Latin small letter o with grave

ó ó Latin small letter o with acute

ô ô Latin small letter o with circumflex

õ õ Latin small letter o with tilde

ö ö Latin small letter o with diaeresis

238

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 239

Chapter 14: Special Characters

Decimal Entity Mnemonic Entity Character

ø ø Latin small letter o with stroke

ù ù Latin small letter u with grave

ú ú Latin small letter u with acute

û û Latin small letter u with circumflex

ü ü Latin small letter u with diaeresis

ý ý Latin small letter y with acute

þ þ Latin small letter thorn

ÿ ÿ Latin small letter y with diaeresis

Greek and Mathematical Characters
Table 14-8 lists various Greek symbol entities available in HTML.

TABLE 14-8

Greek Symbol Entities

Decimal Entity Mnemonic Entity Character

Α Α Greek capital letter alpha

Β Β Greek capital letter beta

Γ Γ Greek capital letter gamma

Δ Δ Greek capital letter delta

Ε Ε Greek capital letter epsilon

Ζ Ζ Greek capital letter zeta

Η Η Greek capital letter eta

Θ Θ Greek capital letter theta

Ι Ι Greek capital letter iota

Κ Κ Greek capital letter kappa

Λ Λ Greek capital letter lambda

Μ Μ Greek capital letter mu

continued

239

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 240

Part I: Creating Content with HTML

TABLE 14-8 (continued)

Decimal Entity Mnemonic Entity Character

Ν Ν Greek capital letter nu

Ξ Ξ Greek capital letter xi

Ο Ο Greek capital letter omicron

Π Π Greek capital letter pi

Ρ Ρ Greek capital letter rho

Σ Σ Greek capital letter sigma

Τ Τ Greek capital letter tau

Υ Υ Greek capital letter upsilon

Φ Φ Greek capital letter phi

Χ Χ Greek capital letter chi

Ψ Ψ Greek capital letter psi

Ω Ω Greek capital letter omega

α α Greek small letter alpha

β β Greek small letter beta

γ γ Greek small letter gamma

δ δ Greek small letter delta

ε ε Greek small letter epsilon

ζ ζ Greek small letter zeta

η η Greek small letter eta

θ θ Greek small letter theta

ι ι Greek small letter iota

κ κ Greek small letter kappa

λ λ Greek small letter lambda

μ μ Greek small letter mu

ν ν Greek small letter nu

ξ ξ Greek small letter xi

ο ο Greek small letter omicron

π π Greek small letter pi

ρ ρ Greek small letter rho

240

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 241

Chapter 14: Special Characters

Decimal Entity Mnemonic Entity Character

ς ς Greek small letter final sigma

σ σ Greek small letter sigma

τ τ Greek small letter tau

υ υ Greek small letter upsilon

φ φ Greek small letter phi

χ χ Greek small letter chi

ψ ψ Greek small letter psi

ω ω Greek small letter omega

ϑ ϑ Greek small letter theta symbol

ϒ ϒ Greek upsilon with hook symbol

ϖ ϖ Greek pi symbol

Table 14-9 lists a variety of mathematical symbols.

TABLE 14-9

Mathematical Symbol Entities

Decimal Entity Mnemonic Entity Character/Symbol

× × Multiplication sign

÷ &division; Division sign

∀ ∀ For all

∂ ∂ Partial differential

∃ ∃ There exists

∅ ∅ Empty set = null set = diameter

∇ ∇ Nabla = backward difference

∈ ∈ Element of

∉ ∉ Not an element of

∋ ∋ Contains as member

∏ ∏ n-ary product = product sign

∑ ∑ n-ary summation

continued

241

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 242

Part I: Creating Content with HTML

TABLE 14-9 (continued)

Decimal Entity Mnemonic Entity Character/Symbol

− − Minus sign

∗ ∗ Asterisk operator

√ √ Square root = radical sign

∝ ∝ Proportional to

∞ ∞ Infinity

∠ ∠ Angle

∧ ∧ Logical and = wedge

∨ ∨ Logical or = vee

∩ ∩ Intersection = cap

∪ ∪ Union = cup

∫ ∫ Integral

∴ ∴ Therefore

∼ ∼ Tilde operator = varies with = similar to

≅ ≅ Approximately equal to

≈ ≈ Almost equal to = asymptotic to

≠ ≠ Not equal to

≡ ≡ Identical to

≤ ≤ Less than or equal to

≥ ≥ Greater than or equal to

⊂ ⊂ Subset of

⊃ ⊃ Superset of

⊄ ⊄ Not a subset of

⊆ ⊆ Subset of or equal to

⊇ ⊇ Superset of or equal to

⊕ ⊕ Circled plus = direct sum

⊗ ⊗ Circled times = vector product

⊥ ⊥ Up tack = orthogonal to = perpendicular

⋅ ⋅ Dot operator

⌈ ⌈ Left ceiling

⌉ ⌉ Right ceiling

242

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 243

Chapter 14: Special Characters

Decimal Entity Mnemonic Entity Character/Symbol

⌊ ⌊ Left floor

⌋ ⌋ Right floor

〈 ⟨ Left-pointing angle bracket

〉 ⟩ Right-pointing angle bracket

Other Useful Entities
Table 14-10 lists other miscellaneous entities.

TABLE 14-10

Miscellaneous Entities

Decimal Entity Mnemonic Entity Character/Symbol

¡ ¡ Inverted exclamation mark

¦ ¦ Broken bar = broken vertical bar

§ § Section sign

¨ ¨ Diaeresis = spacing diaeresis

ª ª Feminine ordinal indicator

« « Left-pointing double angle quotation
mark = left pointing guillemet

¬ ¬ Not sign

­ ­ Soft hyphen = discretionary hyphen

¯ ¯ Macron = spacing macron = overline
= APL overbar

° ° Degree sign

± ± Plus-minus sign = plus-or-minus sign

² ² Superscript two = superscript digit
two = squared

³ ³ Superscript three = superscript digit
three = cubed

´ ´ Acute accent = spacing acute

µ µ Micro sign

continued

243

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 244

Part I: Creating Content with HTML

TABLE 14-10 (continued)

Decimal Entity Mnemonic Entity Character/Symbol

¶ ¶ Pilcrow sign = paragraph sign

· · Middle dot = Georgian comma = Greek middle dot

¸ ¸ Cedilla = spacing cedilla

¹ ¹ Superscript one = superscript digit one

º ° Masculine ordinal indicator

» » Right-pointing double angle quotation mark =
right-pointing guillemet

¼ ¼ Vulgar fraction one-quarter = fraction one-quarter

½ ½ Vulgar fraction one-half = fraction one-half

¾ ¾ Vulgar fraction three-quarters = fraction three-quarters

¿ ¿ Inverted question mark = turned question mark

Œ Œ Latin capital ligature OE

œ œ Latin small ligature oe

Š Š Latin capital letter S with caron

š š Latin small letter s with caron

Ÿ Ÿ Latin capital letter Y with diaeresis

ˆ ° Modifier letter circumflex accent

˜ ˜ Small tilde

    Thin space

‌ ‌ Zero width non-joiner

‍ ‍ Zero width joiner

‎ ‎ Left-to-right mark

‏ ‏ Right-to-left mark

‚ ‚ Single low-9 quotation mark

„ „ Double low-9 quotation mark

† † Dagger

244

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 245

Chapter 14: Special Characters

Decimal Entity Mnemonic Entity Character/Symbol

‡ ‡ Double dagger

‰ ‰ Per mille sign

‹ ‹ Single left-pointing angle quotation mark

› › Single right-pointing angle quotation mark

Summary
Although most of your Web documents will contain standard characters, there are times when
you need accented or special characters as well. Taking character and language encoding into
account, you can also fall back on HTML entities to insert these special characters.

The next, and final, HTML chapter in this section covers internationalization (Chapter 15). The
next two chapters (16 and 17) cover JavaScript and DHTML, bringing scripting to your now
robust knowledge of HTML. Part II covers tools and utilities, and Part III provides in-depth
coverage of CSS.

245

Schafer c14.tex V3 - 12/14/2009 4:39pm Page 246

Internationalization
and Localization

IN THIS CHAPTER
Internationalization and

Localization

Translating Your Web Site

Understanding Unicode

Even though this book is written in English, chances are good it will
be translated into other languages. From a website perspective, if
your site is only in English, you may eliminate a huge portion of

your potential world audience. This chapter takes a look at some options
for improving your documents’ access to the world’s population.

Note
The terms Internationalization and Localization are often used interchange-
ably. To Internationalize an online document refers to making it more suitable
to a global audience, while Localizing an online document refers to making
the document suitable for one particular locale. In this chapter we deal
with the latter. �

Internationalization and
Localization
Only a small percentage of the world’s population uses English as a first lan-
guage. If you anticipate a wide range of international visitors to your site,
then you should consider localizing your site.

Localization is the process of creating different sites for each language you
intend to support. By creating documents in Japanese, Chinese, German,
French, and Spanish, for example, you vastly increase the size of your
potential audience.

247

Part I: Creating Content with HTML

The actual implementation of localization can be very straightforward: create different URL
‘‘branches’’ for your site, one branch for each language. For example, if you need to support
English, German, and Japanese, your home page URLs might resemble the following:

http://www.on-target-games.com/en/index.htm
http://www.on-target-games.com/de/index.htm
http://www.on-target-games.com/jp/index.htm

On your Web server, each URL branch would be linked to document directories that store
the appropriate language version. Other sites that link to your site can simply use the proper
URL — that is, include ‘‘en,’’ ‘‘de,’’ or ‘‘jp’’ in the URL pointing to a document on your
site — depending on the audience’s preferred language. In addition, each version of your home
page should include a prominent navigational link at the top of the document to the other
language versions of the document, as shown in Figure 15-1.

FIGURE 15-1

Localized sites should include navigational aids for users to reach the other versions of a
document.

Language selection
navigation bar

However, maintaining such an implementation can quickly become overwhelming. When a doc-
ument changes on the site, the change must be translated and incorporated into each of the
mirrored sites as well. This exponential increase in labor is why many sites avoid localization.

248

Chapter 15: Internationalization and Localization

Translating Your Web Site
There’s much more to localization than simply creating branches on your Web server. To be
truly global you need to create documents in the native language of your audience — that means
translating your text into those languages. Of course, simply changing the words from one lan-
guage to another won’t always accomplish your goals. Simple, colloquial phrases in English won’t
always carry the same meaning when translated to other languages.

Tip
You can download free localization software from The RWS Group at: www.translate.com/technology
/tools/index.html. �

For this reason, you should try to use native speakers of any language to which you are translat-
ing. This can be an expensive proposition, and may not be an option if you run a small site that
is only marginally profitable. But if you have already made the decision to localize, it’s important
to do it right.

You can also use translation services that specialize in such endeavors. Use Google or another
search engine to point you to ‘‘translation services’’ and see which options may be right for you.
Another, often overlooked, resource is International sales partners — companies that want to
sell your products or services in their area of the world. If your company or business has ties to
other locales, see if you can take advantage of those resources for your localization needs.

If you have only a small amount of text to translate, you can try using an online translator like
Yahoo’s Babel Fish (http://babelfish.yahoo.com/). Babel Fish enables you to translate
blocks of text or entire pages between several different languages. Babel Fish’s main purpose is
to aid in translating pages and text from other languages — a snippet of Japanese to English for
an English-speaking person — but in a pinch it can be used to translate from English as well.

Understanding Unicode
Unicode is a standard developed by the Unicode Consortium for processing the world’s alphabets
in a consistent way. Unicode consists of a number of tables, each containing numerical refer-
ences to alphanumeric characters. Every character in nearly every written language in the world
is represented in Unicode, as shown in Table 15-1.

The Unicode tables are also known as code pages. Each code page serves a specific set of
languages and has a table of numeric references for each character. Each row in Table 15-1
represents a code page, and each code page consists of several rows of numeric references for
the characters in the corresponding language.

Basic Latin (U + 0000–U + 007F)
All nations in America, most European nations, most African nations, as well as Australia and
New Zealand use the Latin encoding. In Unicode, the Latin encoding is broken down into
different parts, with the most basic called Basic Latin. Only a few languages can be written

249

Part I: Creating Content with HTML

entirely with a Basic Latin encoding. You generally need to incorporate additional Latin
encodings because Basic Latin consists of only characters between 0 and 7F (hexadecimal).

Tip
All of these Latin encodings are automatically included as part of the UTF-8 encoding. In fact,
Unicode-based UTF-8 includes most of the world’s written languages. �

TABLE 15-1

Alphabets Represented in Unicode

Start Code End Code Block Name

\u0000 \u007F Basic Latin

\u0080 \u00FF Latin-1 Supplement

\u0100 \u017F Latin Extended-A

\u0180 \u024F Latin Extended-B

\u0250 \u02AF IPA Extensions

\u02B0 \u02FF Spacing Modifier Letters

\u0300 \u036F Combining Diacritical Marks

\u0370 \u03FF Greek and Coptic

\u0400 \u04FF Cyrillic

\u0530 \u058F Armenian

\u0590 \u05FF Hebrew

\u0600 \u06FF Arabic

\u0700 \u074F Syriac

\u0750 \u077F Arabic Supplement

\u0780 \u07BF Thaana

\u07C0 \u07FF N’Ko

\u0900 \u097F Devanagari

\u0980 \u09FF Bengali

\u0A00 \u0A7F Gurmukhi

\u0A80 \u0AFF Gujarati

\u0B00 \u0B7F Oriya

\u0B80 \u0BFF Tamil

\u0C00 \u0C7F Telugu

250

Chapter 15: Internationalization and Localization

Start Code End Code Block Name

\u0C80 \u0CFF Kannada

\u0D00 \u0D7F Malayalam

\u0D80 \u0DFF Sinhala

\u0E00 \u0E7F Thai

\u0E80 \u0EFF Lao

\u0F00 \u0FFF Tibetan

\u1000 \u109F Myanmar

\u10A0 \u10FF Georgian

\u1100 \u11FF Hangul Jamo

\u1200 \u137F Ethiopic

\u1380 \u139F Ethiopic Supplement

\u13A0 \u13FF Cherokee

\u1400 \u167F Unified Canadian Aboriginal Syllabics

\u1680 \u169F Ogham

\u16A0 \u16FF Runic

\u1700 \u171F Tagalog

\u1720 \u173F Hanunoo

\u1740 \u175F Buhid

\u1760 \u177F Tagbanwa

\u1780 \u17FF Khmer

\u1800 \u18AF Mongolian

\u1900 \u194F Limbu

\u1950 \u197F Tai Le

\u1980 \u19DF New Tai Lue

\u19E0 \u19FF Khmer Symbols

\u1A00 \u1A1F Buginese

\u1B00 \u1B7F Balinese

\u1D00 \u1D7f Phonetic Extensions

\u1D80 \u1DBF Phonetic Extensions Supplement

\u1DC0 \U1DFF Combining Diacritical Marks Supplement

continued

251

Part I: Creating Content with HTML

TABLE 15-1 (continued)

Start Code End Code Block Name

\u1E00 \u1EFF Latin Extended Additional

\u1F00 \u1FFF Greek Extended

\u2000 \u206F General Punctuation

\u2070 \u209F Superscripts and Subscripts

\u20A0 \u20CF Currency Symbols

\u20D0 \u20FF Combining Diacritical Marks for Symbols

\u2100 \u214F Letterlike Symbols

\u2150 \u218F Number Forms

\u2190 \u21FF Arrows

\u2200 \u22FF Mathematical Operators

\u2300 \u23FF Miscellaneous Technical

\u2400 \u243F Control Pictures

\u2440 \u245F Optical Character Recognition

\u2460 \u24FF Enclosed Alphanumerics

\u2500 \u257F Box Drawing

\u2580 \u259F Block Elements

\u25A0 \u25FF Geometric Shapes

\u2600 \u26FF Miscellaneous Symbols

\u2700 \u27BF Dingbats

\u27C0 \u27EF Miscellaneous Mathematical Symbols-A

\u27F0 \u27FF Supplemental Arrows-A

\u2800 \u28FF Braille Patterns

\u2900 \u297F Supplemental Arrows-B

\u2980 \u29FF Miscellaneous Mathematical Symbols-B

\u2A00 \u2AFF Supplemental Mathematical Operators

\u2B00 \u2BFF Miscellaneous Symbols and Arrows

\u2C00 \u2C5F Glagolitic

\u2C60 \u2C7F Latin Extended-C

\u2C80 \u2CFF Coptic

\u2D00 \u2D2F Georgian Supplement

252

Chapter 15: Internationalization and Localization

Start Code End Code Block Name

\u2D30 \u2D7F Tifinagh

\u2D80 \u2DDF Ethiopic Extended

\u2E00 \u2E7F Supplemental Punctuation

\u2E80 \u2EFF CJK Radicals Supplement

\u2F00 \u2FDF KangXi Radicals

\u2FF0 \u2FFF Ideographic Description Characters

\u3000 \u303F CJK Symbols and Punctuation

\u3040 \u309F Hiragana

\u30A0 \u30FF Katakana

\u3100 \u312F Bopomofo

\u3130 \u318F Hangul Compatibility Jamo

\u3190 \u319F Kanbun

\u31A0 \u31BF Extended Bopomofo

\u31C0 \u31EF CJK Strokes

\u31F0 \u31FF Katakana Phonetic Extensions

\u3200 \u32FF Enclosed CJK Letters and Months

\u3300 \u33FF CJK Compatibility

\u3400 \u4DBF CJK Unified Ideographs Extension A

\u4DC0 \u4DFF Yijing Hexagram Symbols

\u4E00 \u9FBB CJK Unified Ideographs

\uA000 \uA48F Yi Syllables

\uA490 \uA4CF Yi Radicals

\uA700 \uA71F Modifier Tone Letters

\uA720 \uA7FF Latin Extended-D

\uA800 \uA82F Syloti Nagri

\uA840 \uA87F Phags-pa

\uAC00 \uD7A3 Hangul Syllables

\uD800 \uDB7F High Surrogates

\uDB80 \uDBFF Private Use High Surrogates

\uDC00 \uDFFF Low Surrogates

continued

253

Part I: Creating Content with HTML

TABLE 15-1 (continued)

Start Code End Code Block Name

\uE000 \uF8FF Private Use Area

\uF900 \uFAFF CJK Compatibility Ideographs

\uFB00 \uFB4F Alphabetic Presentation Forms

\uFB50 \uFDFF Arabic Presentation Forms-A

\uFE00 \uFE0F Variation Selectors

\uFE10 \uFE1F Vertical Forms

\uFE20 \uFE2F Combining Half Marks

\uFE30 \uFE4F CJK Compatibility Forms

\uFE50 \uFE6F Small Form Variants

\uFE70 \uFEFF Arabic Presentation Forms-B

\uFF00 \uFFEF Halfwidth and Fullwidth Forms

\uFFF0 \uFFFF Specials

ISO-8859-1
If you are working on websites for Western audiences, you will most likely use ISO-8859-1,
which, although not officially a subset of UTF-8, does map to the Latin Basic and Latin Extended
A Unicode sets.

The most familiar encoding to Western HTML developers, ISO-8859-1, is a subset of Unicode
and can be used safely because most modern user agents support Unicode. Although ISO-8859-1
is not part of the Unicode standard, the two bodies governing both standards have worked
together to standardize the models.

Note
The entire set of ISO-8859-1 numeric references can be found at www.w3 .org/MarkUp/html3/
latin1.html. �

Table 15-2 shows the entities you are likely to encounter as an HTML developer. If your encod-
ing is UTF-8, then you can use the decimal references, but for compatibility with older user
agents you should use HTML entities, because many older user agents don’t support Unicode.

Latin-1 Supplement (U + 00 C0 - U + 00FF)
The Latin-1 Supplement also contains values from ISO-8859-1. The characters in this Unicode
block are used for the following languages:

� Danish

� Dutch

254

Chapter 15: Internationalization and Localization

� Faroese

� Finnish

� Flemish

� German

� Icelandic

� Irish

� Italian

� Norwegian

� Portuguese

� Spanish

� Swedish

It extends the Basic Latin encoding with a miscellaneous set of punctuation and mathematical
signs.

TABLE 15-2

ISO-8859-1 HTML Entities

Description Decimal-Based
Code Value

HTML
Entity

How Character
Appears on Web Page

Quotation mark " " ’’

Ampersand & & &

Less-than sign < < <

Greater-than sign > > >

Nonbreaking space

Inverted exclamation ¡ ¡ ¡

Cent sign ¢ ¢ ¢

Pound sterling £ £ £

General currency sign ¤ ¤ ¤

Yen sign ¥ ¥ ¥

Broken vertical bar ¦ ¦ |
Section sign § § §

Umlaut (diaeresis) ¨ ¨
&dia;

¨

Copyright © © ©

continued

255

Part I: Creating Content with HTML

TABLE 15-2 (continued)

Description Decimal-Based
Code Value

HTML
Entity

How Character
Appears on Web Page

Feminine ordinal ª ª a

Left angle quote, guillemotleft « « «

Not sign ¬ ¬ ¬
Soft hyphen ­ ­ -

Registered trademark ® ® ®

Macron accent ¯ ¯ ¯

Degree sign ° ° ◦

Plus or minus ± ± ±
Superscript two ² ² 2

Superscript three ³ ³ 3

Acute accent ´ ´ ’

Micro sign µ µ μ

Paragraph sign ¶ ¶ ¶

Middle dot · · ·
Cedilla ¸ ¸ ¸

Superscript one ¹ ¹ 1

Masculine ordinal º ° ◦

Right angle quote, guillemotright » » »

Fraction one-fourth ¼ ¼ 1/4

Fraction one-half ½ ½ 1/2

Fraction three-fourths ¾ ¾ 3/4

Inverted question mark ¿ ¿ ¿

Capital A, grave accent À À À

Capital A, acute accent Á Á Á

Capital A, circumflex accent Â Â Â

Capital A, tilde Ã Ã Ã

Capital A, diaeresis or umlaut mark Ä Ä Ä

Capital A, ring Å Å Å

Capital AE diphthong (ligature) Æ Æ Æ

256

Chapter 15: Internationalization and Localization

Description Decimal-Based
Code Value

HTML Entity How Character
Appears on Web Page

Capital C, cedilla Ç Ç Ç

Capital E, grave accent È È È

Capital E, acute accent É É É

Capital E, circumflex accent Ê Ê Ê

Capital E, diaeresis or umlaut mark Ë Ë Ë

Capital I, grave accent Ì Ì Ì

Capital I, acute accent Í Í Í

Capital I, circumflex accent Î Î Î

Capital I, diaeresis or umlaut mark Ï Ï Ï

Capital Eth, Icelandic Ð Ð -D

Capital N, tilde Ñ Ñ Ñ

Capital O, grave accent Ò Ò Ò

Capital O, acute accent Ó Ó Ó

Capital O, circumflex accent Ô Ô Ô

Capital O, tilde Õ Õ Õ

Capital O, diaeresis or umlaut mark Ö Ö Ö

Multiplication sign × × ×
Capital O, slash Ø Ø Ø

Capital U, grave accent Ù Ù Ù

Capital U, acute accent Ú Ú Ú

Capital U, circumflex accent Û Û Û

Capital U, diaeresis or umlaut mark Ü Ü Ü

Capital Y, acute accent Ý Ý Ý

Capital THORN, Icelandic Þ Þ Þ
Small sharp s, German (sz ligature) ß ß ß

Small a, grave accent à à à

Small a, acute accent á á á

Small a, circumflex accent â â â

Small a, tilde ã ã ã

continued

257

Part I: Creating Content with HTML

TABLE 15-2 (continued)

Description Decimal-Based
Code Value

HTML
Entity

How Character
Appears on Web Page

Small a, diaeresis or umlaut mark ä ä ä

Small a, ring å å å

Small ae diphthong (ligature) æ æ æ

Small c, cedilla ç ç ç

Small e, grave accent è è è

Small e, acute accent é é é

Small e, circumflex accent ê ê ê

Small e, diaeresis or umlaut mark ë ë ë ë

Small i, grave accent ì ì ı̀

Small i, acute accent í í ı́

Small i, circumflex accent î î ı̂

Small i, diaeresis or umlaut mark ï ï ı̈

Small eth, Icelandic ð ð ð

Small n, tilde ñ ñ ñ

Small o, grave accent ò ò ò

Small o, acute accent ó ó ó

Small o, circumflex accent ô ô ô

Small o, tilde õ õ õ

Small o, diaeresis or umlaut mark ö ö ö

Division sign ÷ ÷ ÷
Small o, slash ø ø ø

Small u, grave accent ù ù ù

Small u, acute accent ú ú ú

Small u, circumflex accent û û û

Small u, diaeresis or umlaut mark ü ü ü

Small y, acute accent ý ý ý

Small thorn, Icelandic þ þ þ
Small y, diaeresis or umlaut mark ÿ ÿ ÿ

Trademark symbol ™ ™ ™

258

Chapter 15: Internationalization and Localization

Latin Extended-A (U + 0100 - U + 017F)
Once you extend coding past Latin-1 Supplement in Unicode, you begin to veer away from
ISO-8859-1 as well. There are specific ISO encodings for different Latin languages. You can find
the names of these encodings at www.alanwood.net/unicode/latin extended a.html.

Alternately, you can simply guarantee the incorporation of these encodings by using UTF-8. The
characters in this Unicode block are used in the following languages (among others):

� Afrikaans

� Basque

� Breton

� Catalan

� Croatian

� Czech

� Esperanto

� Estonian

� French

� Frisian

� Greenlandic

� Hungarian

� Latin

� Latvian

� Lithuanian

� Maltese

� Polish

� Provencal

� Rhaeto-Romanic

� Romanian

� Romany

� Sami

� Slovak

� Slovenian

� Sorbian

� Turkish

� Welsh

259

Part I: Creating Content with HTML

Latin Extended-B and Latin Extended Additional
The characters in this block are used to write additional languages and to extend Latin encod-
ings. These characters include seldom used characters such as the bilabial click. By the time you
reach this territory of encoding, you should definitely be using UTF-8.

Tip
It might seem that encoding your documents in UTF-8 is the best bet. However, mixing encodings is a bad
idea and you should consider using a specific codepage for each region — ISO-8859-1 for a largely Western
language audience, for example. �

Summary
This chapter introduced you to the concept of localization of your site. It also covered the
basics of Unicode and the different code pages you are likely to encounter when coding your
documents for an international audience.

The next two chapters, 16 and 17, cover JavaScript and dynamic HTML.

260

Scripts

IN THIS CHAPTER
Client-Side versus Server-Side

Scripting

Setting the Default Scripting
Language

Including a Script

Calling an External Script

Triggering Scripts with Events

Hiding Scripts from Older
Browsers

S tandard HTML was designed to provide static, text-only documents.
No innate intelligence is built into plain HTML, but it is desired,
especially in more complex documents or documents designed to

be interactive. Enter scripts — svelte programming languages designed to
accomplish simple tasks while adhering to the basic premise of the Web,
easily deployable content that can play nicely with plain-text HTML.

This chapter covers scripting basics and then provides the details of how to
use client-side scripting in your documents.

Client-Side versus Server-Side
Scripting
There are two basic varieties of scripting, client-side and server-side. As their
names imply, the main difference is where the scripts are actually executed.

Client-side scripting
Client-side scripts are run by the client software — that is, the user agent.
As such, they impose no additional load on the server, but the client must
support the scripting language being used.

JavaScript is the most popular client-side scripting language, but JScript and
VBScript are also widely used. Client-side scripts are typically embedded in
HTML documents and deployed to the client. Client users can usually easily
view these scripts.

For security reasons, client-side scripts generally cannot read or write to the
server or client file system.

261

Part I: Creating Content with HTML

Server-side scripting
Server-side scripts are run by the Web server. Typically, these scripts are referred to as CGI
scripts, CGI being an abbreviation for Common Gateway Interface, the first interface for
server-side Web scripting. Server-side scripts impose more of a load on the server, but generally
don’t influence the client — even output to the client is optional. The client may have no idea
that the server is running a script.

Perl, Python, PHP, Java, ASP, and ASP.NET are all examples of server-side scripting languages.
The script typically resides only on the server, but is called by code in the HTML document.

Although server-side scripts cannot read or write to the client’s file system, they usually have
some access to the server’s file system. Therefore, it is important that the system administrator
take appropriate measures to secure server-side scripts and limit their access.

Note
Unless you are a system administrator on the Web server you use to deploy your content, your ability to
use server-side scripts is probably limited. Your Internet service provider (ISP) or system administrator has
policies that allow or disallow server-side scripting in various languages and performing various tasks.

If you intend to use server-side scripts, you should check with your ISP or system administrator to deter-
mine what resources are available to you. �

This chapter deals only with client-side scripting.

Setting the Default Scripting Language
To embed a client-side script in your document, you use the script (<script>) tag. This tag has
the following, minimal format:

<script type="script_type">

The value of script_type depends on the scripting language you are using. The following are
generally used script types:

� text/ecmascript
� text/javascript
� text/jscript
� text/vbscript
� text/vbs
� text/xml

For example, if you are using JavaScript, your script tag would resemble the following:

<script type="text/javascript">

262

Chapter 16: Scripts

Note
The W3C recommends that you specify the default script type you are using in an appropriate META tag in
your document. Such a tag resembles the following:

<META http-equiv="content_script_type"
content="text/javascript">

This does not obviate the need for the type attribute in each script tag. You must still specify each
script tag’s type for your documents to validate against HTML 4.01. �

If your script is encoded in a character set other than the one used for the rest of the document,
you should also use the charset attribute to specify the script’s encoding. This attribute has the
same format as the charset attribute for other tags:

charset="character_encoding_type"

Including a Script
To include a script in your document, place the script’s code within <script> tags. For
example, consider the following script:

<script type="text/javascript">
function NewWindow(url){

var fin=window.open(url,"","width=800,height=600,
scrollbars=yes,resizable=yes");

}
</script>

You can include as much scripting code between the tags as needed, providing that the script is
syntactically sound. Scripts can be included within a document’s head or body sections, and you
can include as many script sections as you like. Note, however, that nested script tags are not
valid HTML.

Generally, you will want to place your scripts in the head section of your document so the
scripts are available as the rest of the page loads. You may occasionally want to embed a script
in a particular location in the document — in those cases, place an appropriate script block
in the body of the document. For example, you may want a script in close proximity to a
paragraph it affects. In that case, you would place it in-line, as shown in the following example:

<h2>Spa Services</h2>
<p>The Oasis of Tranquility offers a full menu of services to
renew the real you that lies within. Begin in one of our two
relaxation centers, then enjoy an invigorating body and facial care,
deep soothing massage therapies, and a host of other indulgent
treatments that pamper you on the outside, and revive you from
within. In addition to our many spa services, take a refreshing dip
in the swimming pool, melt in one of our whirlpool spas, or
rejuvenate in the sauna.</p>

263

Part I: Creating Content with HTML

<script type="text/javascript">
... script contents go here ...

</script>
<h2>Give the Gift of Tranquility</h2>
<p>All services at the Oasis of Tranquility can be experienced
individually, or selected a la carte to create you own personalized
day of pampering. Gift certificates are excellent for surprising
your loved ones with an hour or a day of pampering and
rejuvenation.</p>

Calling an External Script
If you have some scripts that you want to use in multiple documents, consider placing them
in an external file. You can then use the script tag’s src attribute to specify that the script
content can be found in that file. For example, suppose you want to include the following script
in multiple documents:

function NewWindow(url){
var fin=window.open(url,"","width=800,height=600,
scrollbars=yes,resizable=yes");

}

You can place the script in a text file on the server and specify the file’s URL in the appropriate
script tag’s src attribute. Suppose the preceding file were stored in the file scripts.js on
the server. Your script tag would then resemble the following:

<script type="text/javascript" src="scripts.js"></script>

Note that even though the script element’s body is empty, it still requires the closing
</script> tag.

One major advantage to external script files is that if you need to edit the script, you can edit
it in one place — the external file — and the change is effected in all the documents that
include it.

Triggering Scripts with Events
Most HTML tags can include event attributes that can be used to trigger scripts. Table 16-1 lists
these attributes and their use for triggering scripts.

Cross-Ref
See Appendix A for a comprehensive list of what tags support event attributes. �

Note
Many of the event attribute triggers are dependent on the element(s) to which they apply being ‘‘in focus’’
at the time of the trigger. �

264

Chapter 16: Scripts

TABLE 16-1

Event Attributes

Attribute Trigger Use

onclick When item enclosed in the tag is clicked

ondblclick When item enclosed in the tag is double-clicked

onmousedown When mouse button is pressed while mouse pointer is over the item enclosed in
the tag

onmouseup When mouse button is released while mouse pointer is over item enclosed in
the tag

onmouseover When mouse pointer is placed over the item enclosed in the tag

onmousemove When mouse is moved within the item enclosed in the tag

onmouseout When mouse is moved outside of the item enclosed in the tag

onblur When item enclosed in the tag has focus removed

onfocus When item enclosed in the tag receives focus

onload When the document finishes loading (valid only in the <body> tag)

onunload When the document is unloaded — when the user navigates to another document
(valid only in the <body> tag). This event is often used to create pop-ups when a
user leaves a site.

onsubmit When a form has its Submit button pressed (valid only in <form> tags)

onreset When a form has its Reset button pressed (valid only in <form> tags)

onkeypress When a key is pressed while the mouse pointer is over the item enclosed in
the tag

onkeydown When a key is pressed down while the mouse pointer is over the item enclosed in
the tag

onkeyup When a key is released while the mouse pointer is over the item enclosed in
the tag

Event triggers have a variety of uses, including the following:

� Form data verification — Using the onchange and onselect attributes, you can verify
each field as it is changed or selected. Using onsubmit and onreset, you can verify or
reset an entire form when the appropriate button is clicked.

� Image animation — Using the onmouseover and onmouseout attributes, you can ani-
mate an image when the mouse pointer passes over it.

� Mouse navigation — Using the onclick and ondblclick attributes, you can trigger
user agent navigation when a user clicks or double-clicks an element.

265

Part I: Creating Content with HTML

For example, you can create images to use as buttons on your page. Figure 16-1 shows two
images for use on a button. The image on the left is used for general display, while the image
on the right is used when the mouse is over the button.

FIGURE 16-1

Two images for use as a button

Tip
Users appreciate visible feedback from active elements on your page. As such, it is important to always pro-
vide visible changes to navigation elements. Links should have a visibly different style when moused over, as
should navigation buttons. �

Combining onmouseover, onmouseout, and onclick events, you can easily create a button
that reacts when the mouse is over it and navigates to a new page when clicked. Consider the
following document, which uses a few JavaScript scripts and events to create a navigation button:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<META http-equiv="Content-Script-Type"

content="text/javascript">

266

Chapter 16: Scripts

<title>Event Buttons</title>
<script type="text/javascript">
// Get the specified object by ID
// (browser specific method used)
function getObj(id) {

if (document.getElementById) {
this.obj = document.getElementById(id);

} else if (document.all) {
this.obj = document.all[id];

} else if (document.layers) {
this.obj = document.layers[id];

}
}

// Activate the specified button
function activate(bname) {
imageid = bname + "button";
iname = bname + "On.jpg";
x = new getObj(imageid);
x.obj.src = iname;

}
// Deactivate the specified button
function deactivate(bname) {
imageid = bname + "button";
iname = bname + "Off.jpg";
x = new getObj(imageid);
x.obj.src = iname;

}

</script>
</head>
<body>
<p>
<img alt="Home page" id="homebutton"
src="HomeOff.jpg"
onmouseover="activate(’home’)"
onmouseout="deactivate(’home’)"
onclick="document.location=’home.html"’

/>
</p>
</body>
</html>

When the document loads, the button is displayed in its inactive (off) state, as shown in
Figure 16-2. When the mouse is placed over the button, the onmouseover event launches the
JavaScript activate function, which changes the image’s src attribute, causing the button to
be displayed as active (on), as shown in Figure 16-3.

When the mouse leaves the button, the onmouseout event launches the deactivate func-
tion, returning the button display to its inactive display state by changing the src attribute
back to the original image. When the button is clicked, the onclick event changes the loca-
tion property of the user agent, effectively navigating to a new page (in this case home.html).

267

Part I: Creating Content with HTML

Note that the JavaScript code for the onclick attribute is contained directly in the value of the
attribute — because the code is short, placing it in-line within the attribute is more economical
than creating a separate function.

FIGURE 16-2

The button is initially displayed in its inactive (off) state.

Tip
You can place several lines of code within the value section of the event attributes. Just ensure that you end
each line (where appropriate) with a semicolon. �

This example only scratches the surface of what JavaScript can do within an HTML document.
Similar methods can be used to manipulate form objects and other elements within your
documents.

Cross-Ref
Additional methods and examples are covered in Chapter 17. �

268

Chapter 16: Scripts

FIGURE 16-3

The button is changed to active (on) when the mouse is over it.

Hiding Scripts from Older Browsers
Not all user agents support JavaScript. Many of the older user agents are not JavaScript-enabled,
and some of the latest user agents may have JavaScript disabled by their users.

Note
Most modern browsers will ignore scripts of types they do not recognize. �

If you are concerned about older browsers not recognizing your scripts, you should hide your
scripts so that older browsers will ignore them (instead of trying to render them).

To hide your scripts, simply place them within a special set of comment tags. The only differ-
ence between normal comment tags and script-hiding tags is that the closing tag contains two
slashes (//). Those two slashes enable browsers that support scripting to find the script.

269

Part I: Creating Content with HTML

For example, the following structure will effectively hide the scripts within the <script> tag:

<script type="text/javascript">
<!-- hide scripts from older browsers
--- Script content ---
// -->

</script>

Summary
This chapter introduced how to add basic intelligence and dynamic content to your site via
client-side scripting. You learned how to embed scripts in your documents and how to utilize
external script files. The chapter also covered the use of event attributes to trigger scripts from
user actions.

The next chapter covers Dynamic HTML, which enables you to influence a document’s content
using scripting, and shows how to put the basic knowledge of scripting you learned here to max-
imum use.

270

Dynamic HTML

IN THIS CHAPTER
The Need for DHTML

How DHTML Works

The Document Object Model

The JavaScript DOM

Using Event Handlers

Accessing an Element by Its ID

Cross-Browser Compatibility
Issues

DHTML Examples

Form Automation: Check
boxes

Dynamic HTML (DHTML) is a combination of HTML, CSS, and
JavaScript, used to create dynamic Web page effects. These can be
animations, dynamic menus, text effects such as drop shadows, text

that appears when a user rolls over an item, and other similar effects.

This chapter introduces DHTML by reviewing some JavaScript basics and
providing a look at the Document Object Model (DOM), which enables you
to access HTML elements so you can change their properties and/or content.
Examples of common DHTML techniques are provided.

Note
In a very strict, technical sense, DHTML is thought of as containing code
that is targeted toward level 4 browser architecture with a lot of proprietary
code. For example, such a script would be written for a particular platform,
use proprietary hooks and code existing only on that platform, and would be
incompatible with other platforms.

However, Document Object Model (DOM) scripting has emerged to enable
scripts that follow cross-browser–compatible standards, and hence are more
compatible with more platforms.

That said, DHTML is still the predominant term used for the dynamic combi-
nation of HTML, CSS, and JavaScript, and as such is used here. �

The Need for DHTML
DHTML, when used correctly, can significantly enhance the user experience.
DHTML was originally best known for its flashy effects. These still exist, but
their importance is questionable, and when used improperly they can be

271

Part I: Creating Content with HTML

annoying for your users. Fancy text animations and bouncing balls might be fun to write, but
they’re not so much fun for the user. This chapter focuses on the more practical aspects of
DHTML, most of which are related to navigation. After all, your website should be all about the
user experience.

Tip
Whenever you create an enhancement to your website, you should always ask, ‘‘Does this improve the user
experience? Can they navigate my site more easily? Read my Web page more easily?’’ If the answer to any
of these questions is no, rethink the enhancement. �

How DHTML Works
DHTML can work either by applying certain CSS properties or by using JavaScript to directly
manipulate HTML elements. When using JavaScript, DHTML takes advantage of a browser’s
object model, which is a tree of objects based on the element set of HTML and the property
set of CSS. When you code against that object model, you can change an element’s properties,
which are associated with an element’s attributes. An element’s attributes, in fact, are referred to
as properties in a JavaScript environment. How these properties are referred to, and what actions
(methods) you can take on them, is determined by the DOM.

Actually, several DOMs are available for your scripting needs. However, only two are pertinent
for typical websites — the pure object DOM created by the World Wide Web Consortium
(W3C) and the JavaScript DOM consisting of JavaScript methods mapped to document objects.
The following sections cover both of these models.

The Document Object Model
Most Web developers are familiar with the concept of DHTML and the underlying DOMs
developed by Netscape and Microsoft for their respective browsers. However, a unifying
DOM developed by the W3C is even more powerful, because of its compatibility, and is much
more popular with more professional developers. The W3C DOM has several advantages over
the DHTML DOMs — using its node structure, it is possible to easily navigate and change
documents despite the user agent employed to display them. This chapter covers the basics of
the W3C DOM and explains how to use JavaScript to manipulate it.

Note
The W3C DOM is much more complex than shown within this chapter. Several additional methods and
properties are at your disposal to use in manipulating documents, many more than we have room to
address in this chapter. Further reading and information on the standard can be found on the W3C site at
www.w3.org/TR/2000/WD-DOM-Level-1-20000929/Overview.html. �

272

Chapter 17: Dynamic HTML

The history of the DOM
The DOM was developed by the W3C to allow programming languages access to the underlying
structure of a Web document. Using the DOM, a program can access any element in the docu-
ment, determining and changing attributes and even removing, adding, or rearranging elements
at will.

It’s important to note that the DOM is a type of application program interface (API), allowing
any programming language access to the structure of a Web document. The main advantage of
using the DOM is the capability to manipulate a document without another trip to the docu-
ment’s server. As such, the DOM is typically accessed and used by client-side technologies, such
as JavaScript.

The first DOM specification (Level 0) was developed at the same time as JavaScript and early
browsers. It is supported by Netscape 2 onward.

Two intermediate DOMs were supported by Netscape 4 onward and Microsoft Internet Explorer
(IE) versions 4 and 5 onward. These DOMs were proprietary to the two sides of the browser
coin — Netscape and Microsoft IE. The former used a collection of elements referenced through
a document.layers object, whereas the latter used a document.all object. To be truly
cross-browser compatible, a script should endeavor to cover both of these DOMs instead of only
one or the other.

The latest, well-supported DOM specification (Level 2) is supported by Mozilla and Microsoft
Internet Explorer version 5 onward. Both browser developers participated in the creation of this
level of the DOM. However, Microsoft chose to continue to support its document.all model as
well, while Netscape discontinued its document.layers model.

Keep in mind that because the DOM was originally intended to allow programs to navigate and
change XML, not HTML, documents, it contains many features a Web developer dealing only
with HTML may never need.

Understanding the DOM
The basis of the DOM is to recognize each element of the document as a node connected to
other nodes in the document and to the document root itself. The best way to understand the
structure is to look at an example. The following code shows a document that renders as shown
in Figure 17-1, and whose DOM is illustrated in Figure 17-2:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Sample DOM Document</title>
<style type="text/css">
div.div1 { background-color: #999999; }

273

Part I: Creating Content with HTML

div.div2 { background-color: #BBBBBB; }
table, table * { border: thin solid black; }
table { border-collapse: collapse; }
td { padding: 5px; }

</style>
<script type="text/JavaScript">
</script>
</head>
<body>
<div class="div1">
<h1>Heading 1</h1>
<table>
<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

</div>
<div class="div2">
<h1>Heading 2</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>
<ol id="sortme">An ordered list
Gamma
Alpha
Beta

</div>
</body>
</html>

As you can see, each node is joined to its neighbors using a familiar parent/child/sibling rela-
tionship. For example, the first div node is a child of the body node, and the div node in turn
has three children: an h1 node, a P node, and an ol node. Those three children (h1, p, and ol)
have a sibling relationship to one another.

Plain text and usually the content of nodes such as paragraphs (p) are referenced as textual nodes
and are broken down, as necessary, to incorporate additional nodes. This can be seen in the first
p node, which contains a bold (b) element. The children of the P node include the first bit of
text up to the bold element, the bold element, and the text after the bold element. The bold
element (b) in turn contains a text child, which contains the bolded text.

The relationships between nodes can be explored and traversed using the DOM JavaScript
bindings, as described in the next section.

274

Chapter 17: Dynamic HTML

FIGURE 17-1

A sample document

DOM node properties and methods
The W3C DOM includes several JavaScript bindings that can be used to navigate a document’s
DOM. A subset of those bindings, used in JavaScript as properties and methods, is listed in
Tables 17-1 and 17-2. The first table describes JavaScript’s properties.

Note
A full list of DOM Level 1 JavaScript bindings can be found on the W3C’s Document Object Model
Level 1 pages, at www.w3.org/TR/2000/WD-DOM-Level-1-20000929/ecma-script-language-
binding.html. �

Note
A full list of DOM Level 2 JavaScript bindings can be found on the W3C’s Document Object Model
Level 2 pages, at www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/ecma-script-
binding.html. �

275

Part I: Creating Content with HTML

FIGURE 17-2

Diagram of the sample document’s DOM

HTML

HEAD BODY

DIVDIVTITLE

STYLE

SCRIPT
H1 P

B

H1 TABLE P

LI

LI

LI

OL TR

TBODY

TR

TD Text

TextText
Text

Text

Text

Text

Text

Text
Text

Text

Text

Text

TD

TD

TD

TABLE 17-1

JavaScript DOM Property Bindings

Property Description

attributes This read-only property returns a NamedNodeMap containing the
specified node’s attributes.

childNodes This read-only property returns a node list containing all the children of
the specified node.

firstChild This read-only property returns the first child node of the specified node.

lastChild This read-only property returns the last child node of the specified node.

nextSibling This read-only property returns the next sibling of the specified node.

nodeName This read-only property returns a string containing the name of the node,
which is typically the name of the element (p, div, table, and so on).

nodeType This read-only property returns a number corresponding to the node type
(1 = element, 2 = text).

276

Chapter 17: Dynamic HTML

Property Description

nodeValue This property returns a string containing the contents of the node and
is only valid for text nodes.

ownerDocument This read-only property returns the root document node object of the
specified node.

parentNode This read-only property returns the parent node of the specified node.

previousSibling This read-only property returns the previous sibling of the specified
node. If there is no node, then the property returns null.

TABLE 17-2

JavaScript DOM Method Bindings

Method Description

appendChild(newChild) Given a node, this method inserts the newChild node at the
end of the children and returns a node.

cloneNode(deep) This method clones the node object. The parameter deep — (a
Boolean) — specifies whether the clone should include the
source object’s attributes and children. The return value is the
cloned node(s).

createElement(element) This method creates an HTML element of the specified type.

createTextNode("text") This method creates a new text node using the specified text.

getAttribute(attrib) This method returns the value of the specified attribute.

getElementById(id) This method returns a reference to the element having the id
specified.

getElementByTagName
(element)

This method returns the number of a specified element found
in the document.

hasChildNodes() This method returns true if the node object has children
nodes, false if the node object has no children nodes.

insertBefore(newChild,
refChild)

Given two nodes, this method inserts the newChild node
before the specified refChild node and returns a node
object.

removeChild(oldChild) Given a node, this method removes the oldChild node from
the DOM and returns a node object containing the node
removed.

continued

277

Part I: Creating Content with HTML

TABLE 17-2 (continued)

Method Description

replaceChild(newChild,
oldChild)

Given two nodes, this method replaces the oldChild node
with the newChild node and returns a node object. Note
that if the newChild is already in the DOM, it is removed
from its current location to replace the oldChild.

setAttribute(attribute,
value)

This method sets the specified attribute to the specified
value.

Traversing and changing a document’s nodes
Using the bindings from the preceding section, it is possible to write JavaScript to navigate
through a document using nodes and change node attributes. Remember that nodes typically
correspond to HTML elements, so changing nodes changes the document’s HTML.

The following code includes a recursive JavaScript function, findNode(), that looks at each
node and child node in a document, searching for the node that is an ol element with an id of
sortme. The comments in the code outline how the function operates:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>DOM Find Node</title>
<style type="text/css">
div.div1 { background-color: #999999; }
div.div2 { background-color: #BBBBBB; }
table, table * { border: thin solid black; }
table { border-collapse: collapse; }
td { padding: 5px; }

</style>
<script type="text/JavaScript">
// Starting at node "startnode," transverse the document
// looking for an element named "nodename" with an id
// of "nodeid"
///
function findNode(startnode,nodename,nodeid) {
var foundNode = false;
// Check if our starting node is what we are looking for
if (startnode.nodeName == nodename &&

startnode.id == nodeid) {
foundNode = startnode;

// If startnode is not what we are searching for
} else {

look_thru_children:
// If current startnode has children

278

Chapter 17: Dynamic HTML

if (startnode.hasChildNodes()) {
var children = startnode.childNodes;
// Look through each child and its children
// (by recursing through this function)
for (var i = 0; i < children.length; i++) {
foundNode = findNode(children[i],nodename,nodeid);
// If we find what we are looking for, stop recursion
if (foundNode) { break look_thru_children;}

}
}
}
// Return the node
return foundNode;

}
///
// Kick off the search (runs from <body> onload)
function dofind() {
alert("Click OK to find ‘sortme’ node");
var node = findNode(document,"OL","sortme");
alert("Found node: " + node.nodeName);

}
</script>
</head>
<body onload="dofind()">
<div class="div1">
<h1>Heading 1</h1>
<table>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

</div>
<div class="div2">
<h1>Heading 2</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>
<ol id="sortme">An ordered list

Gamma
Alpha
Beta

</div>
</body>
</html>

279

Part I: Creating Content with HTML

The script opens an alert window displaying the found node’s name.

Tip
The DOM provides another, easier mechanism to find an element with a particular id — namely, the
getElementById() method of the document object. In fact, the entire search function in the preceding
script can be replaced with one line:

node = document.getElementById("sortme");

The previous method of traversing the DOM was used only to illustrate how you can manually navigate and
search the DOM, if necessary. �

Just as you can navigate downward through the document using the childNodes method, you
can also navigate across the DOM with previousSibling or nextSibling (selecting adjacent
siblings of a particular node) or up the DOM using parentNode.

You can also use the JavaScript bindings to change a node’s value. For example, suppose you
have a paragraph element with an ID of "edit" similar to this:

<p id="edit"> ... </p>

You can change the text within the element using the following JavaScript code:

// Find the element, assign it to "node"
var node = document.getElementById("edit");
// Make sure the node is text (nodeType = 3)
if (node.firstChild.nodeType == 3) {
// Change the text to "Changed text"
node.firstChild.nodeValue = "Changed text";

}

You can also copy one element’s text to another, using code similar to the following:

node2.nodeValue = node1.nodeValue;

Ultimately, you can copy an entire node to another, using code similar to this:

// Copy a node and all of its properties to another
node2 = node1;

The JavaScript DOM
The standardized form of JavaScript is called ECMAScript. This is a relevant fact because, usually,
if you confine your scripting to the conventions of the W3C’s Level 1 DOM and ECMAScript,
you’ll be pretty successful at achieving cross-browser scripting compatibility.

280

Chapter 17: Dynamic HTML

Note
You can find the specification for ECMAScript at www.ecma-international.org/publications/
standards/Ecma-262.htm. �

The W3C’s Level 1 Core DOM is basically a set of properties and methods that can be accessed
from a given element. For example, one of the most ubiquitous (and dastardly, in many peo-
ple’s opinion) methods is the window.open()method, which makes it possible for JavaScript
to open a new browser window in which advertising pop-ups appear the majority of the time.
The open()method acts on the window object, which, although not an element (the DOM isn’t
restricted to elements), is still an object that can be manipulated by script.

JavaScript has a host of built-in objects that can be used to access the user agent and the docu-
ment it contains. This section introduces the various objects and how JavaScript can use them.
Figure 17-3 shows the ECMAScript (JavaScript) Core DOM, consisting of the various objects,
properties, and methods to access document objects. The sections that follow provide more detail
on the DOM’s elements.

Note
Use of the JavaScript DOM is a stark contrast to using the W3C DOMs. The former has a host of built-in
objects that allow you to directly access objects in a document, whereas the latter utilizes a set of stan-
dard methods for accessing and manipulating elements as nodes. Generally, use of the JavaScript DOM is
easier and more straightforward, but it does require more advanced knowledge of a document’s layout and
contents, whereas the W3C DOM tools can act upon more abstract documents. �

Tip
For quick-and-dirty scripts, stick with the JavaScript DOM. For more robust and variable scripting, consider
the W3C DOM. �

The window object
The window object is the top-level object for an XHTML document. It includes properties and
methods to manipulate the user agent window. The window object is also the top-level object
for most other objects.

Using the window object, not only can you work with the current user agent window, you can
also open and work with new windows. The following code will open a new window displaying
a specific document:

NewWin = window.open("example.htm","newWindow",
"width=400,height=400,scrollbars=no,resizable=no");

The open method takes three arguments: the URL of the document to open in the window, the
name of the new window, and options for the window. For example, the preceding code opens
a window named newWindow containing the document example.htm and will be 400 pixels
square, be non-resizable, and have no scroll bars.

281

Part I: Creating Content with HTML

FIGURE 17-3

The Core DOM used by ECMAScript (JavaScript)

alinkColor
anchors()
byColor
cookie
fgColor
lastModified
linkColor
links[i]
lastModified
linkColor
location
referrer
title
vlinkColor
clear()
close()
open()
write()
writeIn()

border
complete
height
hspscc
lowarc
name
src
vspecs
width
onAbort event
onError event
onLoad event

defaultValue
form

name
value
blur()
focus

select()
onReset event

onSubmit event

name
defaultSelected

Index
length

selected
selectedIndex

text
value

length
name

selectedIndex
value
type

action
encoding

length
method

target
submit()

reset()
onSubmit event

onReset event

hash
host

hostname
href

pathname
port

protocol
search

onClick event
onMouseOver event

hash
host

hostname
href

pathname
port

protocol
search

defaultStatus
document
frames[i]

history
location

name
parent

self
status

top
window

clearTime out()
close()

confirm()
open()

prompt()
onload event()

download
event()

length
back()

forward()
go()

Window Object Document Object

history

navigator

location IMAGE

LINK

FORM

select text, text
area, password, hidden

options

The options supported by the open method include the following:

� toolbar = yes|no — Controls whether the new window will have a toolbar
� location = yes|no — Controls whether the new window will have an address bar
� status = yes|no — Controls whether the new window will have a status bar
� menubar = yes|no — Controls whether the new window will have a menu bar
� resizeable = yes|no — Controls whether the user can resize the new window

282

Chapter 17: Dynamic HTML

� scrollbars = yes|no — Controls whether the new window will have scrollbars
� width = pixels — Controls the width of the new window
� height = pixels — Controls the height of the new window

Note
Not all user agents support all options. �

The window object can also be used to size and move a user agent window. One interesting
DHTML effect is to shake the current window. The following function can be used to cause the
user agent window to visibly shudder:

function shudder() {
// Move the document window up and down 5 times
for (var i=1; i<= 5; i++) {

window.moveBy(8,8);
window.moveBy(-8,-8);

}
}

You can use other methods to scroll a window (scroll, scrollBy, scrollTo) and to resize a
window (resizeBy, resizeTo).

The document object
You can use the JavaScript document object to access and manipulate the current document in
the user agent window. Many of the collection objects (form, image, and so on) are children of
the document object.

The document object supports a write and writeln method, both of which can be used to
write content to the current document. For example, the following code results in the current
date being displayed (in mm/dd/yyyy format) wherever the code is inserted in the document:

<script type="text/JavaScript">
today = new Date();
document.write((today.getMonth()+1) + "/" + today.getDate() +

"/" + today.getFullYear());
</script>

The open and close methods can be used to open and then close a document for writing.
Building on the examples in the earlier section ‘‘The window object,’’ the following code can be
used to spawn a new document window and write the current date to the new window:

<script type="text/JavaScript">
today = new Date();
newWin = window.open("","","width=400,height=400,

scrollbars=no,resizable=no");

283

Part I: Creating Content with HTML

newDoc = newWin.document.open();
newDoc.write((today.getMonth()+1) + "/" + today.getDate() +
"/" + today.getFullYear());

newDoc.close();
</script>

The form object
You can use the form object to access form elements in a document. The form object supports
length and elements properties — the former property returns how many elements (fields)
are in the form; the latter contains an array of form element objects, one per field. You can also
access the form elements by their name attribute. For example, the following code will set the
value of the addlength field to the length of the address field using the form name and element
names to address the various values:

...
<head>
<script type="text/JavaScript">
function dolength() {
document.form1.addlength.value =

document.form1.address.value.length;
}
</script>
</head>
<body>
<p>
<form name="form1" action="handler.cgi" method="post">
Length: <input type="text" name="addlength" size="5" />

Address: <input type="text" name="address" size="30"

onkeyup="dolength();" />
</form>
</p>
...

The form object can be used for a variety of form automation techniques.

The location object
The location object can be used to manipulate the URL information about the current docu-
ment in the user agent. Various properties of the location object are used to store individual
pieces of the document’s URL (protocol, hostname, port, and so on). For example, you could use
the following code to piece the URL back together:

with (document.location) {
var url = protocol + "//";
url += hostname;
if (port) { url += ":" + port;}
url += pathname;

284

Chapter 17: Dynamic HTML

if (hash) { url += hash;}
}

The preceding example is shown only to illustrate how the various pieces relate to one another;
the location.href property contains the full URL.

One popular method of using the location object is to cause the user agent to load a
new page. To do so, your script simply has to set the document.location object to the
desired URL. For example, the following code will cause the user agent to load the Yahoo.com
home page:

document.location = "http://www.yahoo.com";

The history object
The history object is tied to the history function of the user agent. Using the history object,
your script can navigate up and down the history list. For example, the following code acts as
though the user used the browser’s back feature, causing the user agent to load the previous
document in the history list:

history.back();

Other properties and methods of the history object allow more control over the history list.
For example, the history.length property can be used to determine the number of entries in
the history list.

The self object
You can use the self object to refer to an element making the function call. This object is
typically used when calling JavaScript functions, allowing the function to operate on the object
initiating the call. For example, the following code passes a reference to the button to the
dosomething() function:

<input type="button" value="Click Me" id="button"
onclick="dosomething(self);" />

The function can then use that reference to operate on the object that initiated the call:

function dosomething(el) {
... // do something with the element referenced by el ...
}

For example, the following function can be used to change the color of an element when called
with a reference to that element:

function changecolorRed(el) {
el.style.color = "red";

}

285

Part I: Creating Content with HTML

That function can then be added to an event of any element, as in the following onclick event
example:

<p onclick="changecolorRed(this);">When clicked,
the text will change to red.</p>

Using Event Handlers
Notice the onclick attribute in the following code fragment:

<div onClick="this.style.fontSize=‘60px’;
this.style.color=’red’">

This tells the browser that when the user clicks the div element something should happen. In
this case, that something is that the following two attributes of the style element will change:

� style.fontSize tells the browser to change the font size to 60 pixels.
� style.color tells the browser to change the color to red.

The two statements are JavaScript code, making use of the JavaScript hook into the document’s
CSS. The onClick attribute is actually an event handler. An event is something that happens,
as you probably already know. A party, for example, is an event. When a human triggers the
onparty event, sometimes that human falls down drunk. When a human triggers an onClick
event in a browser, more benign things take place, such as text color changes, menu changes,
and so on.

Besides placing spurious code in the element, you can also place a function call as a function
call to the onClick event. For example, if you have a function named ‘‘ChangeDiv’’ defined in a
<script> section earlier in your document, you could use the following onClick:

<div onClick="ChangeDiv(this);">

All the code to change the div element could then be placed in the function and used by multi-
ple elements.

Note
The ‘‘this’’ used in the previous examples is shorthand for referring to the element in which the code was
placed, or in this case, the div. �

Table 17-3 shows the common event handlers associated with JavaScript.

When one of these events takes place and the appropriate handler is included in one or more
elements, the corresponding code is executed.

Note
Many browsers have their own, custom event handlers, but if you stick with those found in Table 17-3,
you’ll find cross-compatibility issues much easier to solve. �

286

Chapter 17: Dynamic HTML

TABLE 17-3

JavaScript Event Handlers

Event Handler Usage

onAbort Occurs when a user stops an image from loading.

onBlur Occurs when a user’s mouse loses focus on an object. Focus is when the
cursor is active on an object, such as a form input field. When a cursor is
clicked within the field, it has focus, and when the mouse is taken out of the
field, it loses focus, causing an onBlur event.

onChange Occurs when a change takes place in the state of an object — for example,
when a form field loses focus after a user changes some text within the field.

onClick Occurs when a user clicks an object.

onError Occurs when an error occurs in the JavaScript.

onFocus Occurs when a user’s mouse enters a field with a mouse click.

onLoad Occurs when an object, such as a page (as represented by the body element),
is loaded into the browser.

onMouseOut Occurs when a mouse no longer hovers over an object.

onMouseOver Occurs when a mouse begins to hover over an object.

onSelect Occurs when a user selects text.

onSubmit Occurs when a form is submitted.

onUnload Occurs when an object is unloaded.

Accessing an Element by Its ID
One of the surest methods to access a document’s elements is to use the getElementById()
function. This function is supported by any DOM Level 1-compliant user agent, so it can be
relied upon to access elements that have a properly assigned ID attribute.

The getElementById() function’s syntax is straightforward:

element = document.getElementById("elementID");

For example, the following code would assign a reference to the address field to the element
variable:

element = document.getElementById("address");
...
<input type="text" size="30" id="address">

287

Part I: Creating Content with HTML

Once assigned, the element variable can be used to access the referenced field’s properties and
methods:

addresslength = element.length;

Tip
Before using getElementById(), you should test the user agent to ensure that the function is available.
The following if statement will generally ensure that the user agent supports the appropriate DOM level
and thus getElementById():

if (document.all || document.getElementById) {
...getElementById should be available, use it here...

} �

Cross-Browser Compatibility Issues
The most important caveat to exploring DHTML is that there are a ton of compatibility issues.
The newest iterations of Firefox/Mozilla/Netscape and Internet Explorer have actually begun to
come closer together, but developers working with DHTML during the height of the browser
wars quickly learned that developing cross-browser DHTML was a very difficult proposition. As
a result, most large professional sites eschew complex DHTML in favor of simpler cross-browser
routines to improve navigation and other facets of the user experience, rather than excessive
visual effects.

Browser detection: querying for identification
You can detect what kind of a browser a user is using by running a browser-detection script.
This kind of script, along with some more finely tuned type of object detection, described
in the next section, is sometimes referred to as browser sniffing. At its simplest, a typical
browser-detection script looks like this:

<script language="JavaScript">
<!--
var bName =navigator.appName;
var bVer = parseFloat(navigator.appVersion);
if (bName == "Netscape")
var browser = "Netscape Navigator"

else
var browser = bName;

document.write("You are currently using ", browser, " ",
bVer, ".");
// -->
</script>

288

Chapter 17: Dynamic HTML

However, this method is inexact at best. Many browsers report erroneous data in their ID strings,
and knowing a browser’s name and version doesn’t guarantee that it supports particular features.
A better method is to test for each key feature you use — or objects that exist to support that
feature — as described in the next section.

Browser detection: object detection
Object detection is a more precise way of browser sniffing. It examines a browser’s support
for various aspects of the object model. This avoids the potential for successfully checking a
browser version but not confirming that the browser actually supports a specific object property
or method. For this reason, object detection is the preferred method for browser sniffing and
is considered a best practice. In addition, unless you have the object model of all the different
browsers memorized, it’s difficult to know which browser supports which object. It’s easier to
just check and see if a browser supports a specific object’s properties or methods.

The principles used in object detection are quite similar to those used in browser detection.
You make use of JavaScript if statements to check a browser’s support for a named object’s
properties or methods. If the browser does support the object, you execute some given code.
For example, using regular expressions can be very handy in JavaScript, but not if your users’
browsers don’t support them. So you create a simple detection script to see if they do:

if (window.RegExp) {
// execute some regular expressions

} else {
// provide an alternative to regular expressions

}

DHTML Examples
This section offers a few practical examples of DHTML. The scripts you’ll see here are necessar-
ily simple to get you started. You’ll find a ton of resources on the Internet for additional help,
including a vast array of freely available scripts you can customize for your own use. We’ll take
a look at a few of the most popular DHTML routines.

Form Automation: Check boxes
Dynamic HTML is very useful when used with form elements. By using events to tie specific
elements to JavaScript functions, you can perform a wide array of automated tasks.

One popular automation technique is to add a special check box that enables you to check all of
the check boxes in a series at the same time, rather than having to check each one individually.
Take the document shown in Figure 17-4, for example.

289

Part I: Creating Content with HTML

FIGURE 17-4

A series of check boxes might benefit from an ‘‘(un)check all’’ check box.

When the (Un)Check All box is checked, all the check boxes will become checked. Likewise,
when the (Un)Check All box is unchecked, all the check boxes will be unchecked.

This technique is accomplished using the code and document snippet shown here:

<html>
<head>

<script type="text/JavaScript">
function checkall() {
var chk = form1.checks[0].checked;
for (i = 1; i < document.form1.checks.length; i++) {

form1.checks[i].checked = chk;
}

}
</script>

</head>
<body>
<form name="form1" action="formhandler.cgi" method="POST">
<p><input id="allboxes" type="checkbox" name="checks"

290

Chapter 17: Dynamic HTML

onClick="checkall();" />(Un)Check All</p>
<p><input type="checkbox" name="checks" />1</p>
<p><input type="checkbox" name="checks" />2</p>
<p><input type="checkbox" name="checks" />3</p>
<p><input type="checkbox" name="checks" />4</p>
<p><input type="checkbox" name="checks" />5</p>
<p><input type="checkbox" name="checks" />6</p>
</form>
</body>
</html>

In this case, the trigger is the onClick event tied to the (Un)Check All check box. When the
box is clicked, it changes state — to and from being checked — and the JavaScript function
checkall()is called. This function iterates through the check boxes in the form and sets them
to the same state as the triggering check box. Hence, if the box is checked, then all the check
boxes will be checked. If the box is unchecked, then all the boxes will likewise be unchecked.

Note
It is important to assign a unique name to the form element and its children (in this case check boxes). It
enables the JavaScript code to identify and act upon that form and its elements. �

You can use similar techniques with other form elements. For example, you could use an
onChange event with a select box. When a new selection is made, the form could morph to suit
the new selection.

Rollovers
Creating rollovers using JavaScript can be as simple or as tedious as you wish it to be. Best
practice would suggest you should create rollovers, like any other JavaScript-based functionality,
in a way that creates the fewest problems for the most users.

Cross-Ref
You can also create rollover effects using the CSS anchor pseudo-class :hover. Samples of this technique
are covered in Chapter 35. �

You can take advantage of the narrowing gap in differences among browsers by relying on the
event models of the main browsers. For example, the following bit of code creates a rollover of
sorts that displays a JavaScript alert box when a user mouses over a portion of text:

To use this rollover, <span style="color:red; cursor:hand;"
onMouseOver="alert(‘AMAZING!!!’)"> mouse over these
words.

The result of this simple bit of code is shown in Figure 17-5.

Mozilla and IE allow all elements to use event handlers such as onmouseover. But because it’s
an attribute, browsers that don’t support event handlers in all their elements will ignore the call

291

Part I: Creating Content with HTML

to the JavaScript because they simply ignore the attribute itself. Keep this concept in mind when
you’re working with DHTML. In other words, try to limit the damage. The beauty of CSS is that
if you use it right, browsers that don’t support CSS will simply ignore your styling. The same is
true for the use of event handlers in HTML.

FIGURE 17-5

When a user mouses over a portion of text, an alert box is displayed.

Collapsible menus
Collapsible menus have become a staple in Web development, and you can generally avoid the
hassle of creating your own from scratch by simply searching the Internet for something that is
close to what you want; then make any adaptations necessary to reflect your own site’s needs.
Collapsible menus generally come in two styles:

� Vertical menus that expand and collapse on the left side of a Web page and within
a reasonably small space — When a user clicks his or her mouse on an item, a group of
one or more sub-items is displayed and, generally, remains displayed until the user clicks
the main item again, which then collapses the tree.

� Horizontal menus that live at the top of a page — When a user rolls his or her mouse
over an item, a group of one or more sub-items is displayed and, generally, disappears
when the mouse loses focus on the item.

292

Chapter 17: Dynamic HTML

How they work
Most collapsible menus rely on either the CSS display property or the CSS visibility
property. The JavaScript used to manage these menus turns the display/visibility on or off
depending on where a user’s mouse is, or turns the display on or off to collapse or expand a
menu. The difference between the visibility property and the display property is that
when you hide an element’s visibility, the element still takes up visible space in the browser
document. When you turn the display property off by giving it a none value (display =
n̋one˝), the space where the affected element lives collapses.

The following code shows an example of a pull-down menu, using JavaScript event triggers and
a hidden table. Figure 17-6 shows the menu in action.

<html>
<head>
<style type="text/css">

table.topmenu { background-color: black; }

table.topmenu td { background-color: lightblue;
width: 200px; }

table.menu { background-color: black; }

table.menu td { color: black; }

</style>

<script type="text/JavaScript">

function showmenu(menu) {
obj = document.getElementById(menu);
obj.style.visibility = "visible";

}
function hidemenu(menu) {

obj = document.getElementById(menu);
obj.style.visibility = "hidden";

}

</script>
</head>
<body>
<table class="topmenu" border="0">
<tr>

<td onMouseOver="showmenu(’products’);"
onMouseOut="hidemenu(’products’);">Products

<table id="products" class="menu" border="0"
style="visibility: hidden; position: absolute;">

<tr><td>Hardware</td></tr>
<tr><td>Software</td></tr>
</tr>

293

Part I: Creating Content with HTML

</table>
</td>
<td onMouseOver="showmenu(’services’);"

onMouseOut="hidemenu(’services’);">Products

<table id="services" class="menu" border="0"
style="visibility: hidden;
position: absolute;">

<tr><td>Documentation</td></tr>
<tr><td>Translations</td></tr>
</tr>
</table>

</td>
<td onMouseOver="showmenu(’company’);"

onMouseOut="hidemenu(’company’);">Products

<table id="company" class="menu" border="0"
style="visibility: hidden; position: absolute;">

<tr><td>About</td></tr>
<tr><td>Contact</td></tr>
</tr>
</table>

</td>
</tr>
</table>
</body>
</html>

FIGURE 17-6

DHTML menus can be as simple or complex as your code will allow.

294

Chapter 17: Dynamic HTML

The mechanics of this menu are fairly straightforward. A series of table cells is filled with the
top menu item (‘‘Products,’’ etc.) and contains a hidden table of sub-elements (visibility=
"hidden" in the elements’ style attribute. The onMouseover event is used to call the
showmenu() JavaScript function when the user mouses over a top menu. The JavaScript
function changes the embedded table’s visibility to ‘‘visible,’’ revealing the table of sub-elements.
When the mouse leaves the top menu item, the onMouseOut event triggers the hidemenu()
function, which changes the embedded table’s visibility back to hidden, hiding the submenu.

Tip
As previously mentioned, you often don’t need to write your own menu from scratch because so many
developers have made them freely available. Instead, you can download someone else’s menu and change
the CSS and some of the other specifics, such as the location to which the links refer. �

Summary
This chapter covered DHTML, or how you can use JavaScript along with HTML and CSS to
create dynamic documents. You learned how to reference elements within the document and
how to use JavaScript to interact with them.

Note that this book’s primary focus is HTML and CSS, and although JavaScript and DHTML
remain in the requisite coverage along with those two topics, it cannot be given the depth
necessary to make one highly proficient in the subject. If JavaScript interests you, refer to a
book, such as the JavaScript Bible (Wiley, 2009), that is more specific to the topic.

295

The Future of HTML:
HTML5

IN THIS CHAPTER
More Publishing and Layout

Features

Accessible Multimedia

Changes: Elements and
Attributes

HTML has come a long way since its inception back in 1991. If you
examine the specification by release version numbers alone — 2,
3.2, 4.0, and 4.01 — you might be tempted to disregard the evo-

lutionary changes brought forth with each version. However, now that we
stand on the edge of the release of HTML5, the jump in technology and
intended use of the language becomes very apparent.

This chapter presents an overview of HTML5.

Note
This chapter was written based on a draft specification of HTML5.
Currently, this version is still several years away from release and
general adoption. As such, documentation within this chapter
may not exactly match the final release of HTML5. To keep tabs
on the latest happenings with HTML5, visit the official W3C site:
http://dev.w3.org/html5/spec/Overview.html. �

More Publishing and Layout
Features
The most interesting new aspects of HTML5 are two-fold:

� Elements created for publishing purposes, not just markup

� Elements created to provide easier avenues for nontextual elements
(like multimedia)

Some examples of new elements created for publishing purposes are the new
section elements — header, hgroup, nav, section, article, aside,
and footer. These elements are designed to free Web authors from over-
using div elements to delimit document elements. For example, Figure 18-1
shows a suggested page layout created using the new section elements in
place of div elements.

297

Part I: Creating Content with HTML

FIGURE 18-1

This use of the new page division tags bears a distinct resemblance to the layout of most documents
on the Web.

<header>

<nav>

<aside>
<article>

<section>

<footer>

A snippet of documents using the older <div> tags and newer specific section tags
(e.g., <header>) illustrates the difference between the markups. The first listing shows the
traditional, div-heavy method of markup, which can be hard to read and navigate. The second
listing shows the same general markup but uses the new document sectioning elements:

<!-- Standard div layering -->
<div id="header"> . . . </div>
<div id="nav"> . . . </div>
<div id="section">

<div id="article"> . . . </div>
<div id="article"> . . . </div>
. . .

</div>
<div id="aside"> . . . </div>
<div id="footer"> . . . </div>

<!-- New section element layering -->
<header> . . . </header>
<nav> . . . </nav>
<section>

<article> . . . </article>
<article> . . . </article>
. . .

</section>
<aside> . . . </aside>
<footer> . . . </footer>

Note
The section elements were created to help create documents like the one shown in Figure 18-1. As you
might have guessed, blogs and news sites played a large part in this evolution. �

Accessible Multimedia
Another big change coming with HTML5 is access to native multimedia — sound, video, and
vector drawing. Although HTML5 will rely on the platform to supply the output means for the
multimedia, the intent is to provide more native, and less plug-in-reliant, multimedia.

298

Chapter 18: The Future of HTML: HTML5

Note
Due to the large user base of certain plug-ins, such as Flash, the new multimedia features of HTML can-
not hope to actually replace plug-ins. However, the new features enable other methods of creating simple
multimedia options. �

One powerful feature that has already made headlines is the canvas-drawing feature. Using a new
element (canvas), the Web author can delimit an area within the document for drawing and
use new JavaScript methods to draw within the canvas. The following code produces the canvas
drawing shown in Figure 18-2:

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Using the Canvas</title>
<style type="text/css">
canvas { border: thin solid black; }

</style>

<script type="text/javascript">
window.addEventListener(’load’, function () {

// Get the canvas element.
var elem = document.getElementById(’myCanvas’);
if (!elem || !elem.getContext) {
return;

}

// Get the canvas 2d context.
var context = elem.getContext(’2d’);
if (!context) {
return;

}

// Draw a blue rectangle.
context.fillStyle = ‘#00f’;
context.fillRect(0, 0, 150, 100);
context.fillStyle = "rgba(255, 0, 0, .5)";

// Draw a red circle with transparency
context.beginPath();
context.arc(200, 200, 150, 0, Math.PI*2, true);
context.closePath();
context.fill();

}, false);
</script>

</head>
<body>

299

Part I: Creating Content with HTML

<p><canvas id="myCanvas" width="200" height="150">Your
browser does not have support for Canvas.</canvas></p>

</body>
</html>

Tip
For more information on the canvas features, see the tutorial at https://developer.mozilla.org/en/
Canvas tutorial. �

The canvas element provides a mechanism for those user agents that don’t support this feature.
If the agent doesn’t support the canvas feature, it will display fallback content that says ‘‘Your
browser does not have support for Canvas’’ (or whatever markup appears between the canvas
tags). Note in Figure 18-2 how the canvas clips any element drawn outside of its border — the
circle in this case.

FIGURE 18-2

The new canvas feature provides drawing mechanisms to HTML documents.

The canvas element also has a border applied. Because it is an HTML block element, it can
have all the usual block element properties applied to it — positioning, decorative, and so on.

Changes: Elements and Attributes
There have been many changes to the elements and attributes that make up HTML5. The follow-
ing sections provide an overview of the more noticeable changes.

300

Chapter 18: The Future of HTML: HTML5

Note
Throughout this book we have continually suggested XHTML formatting standards and techniques. Both will
come in handy with the advent of HTML5, which has deep roots in XHTML. �

New elements
Several new elements have been added to extend the capabilities of HTML5’s markup, as shown
in the following table.

Element(s) Use

section Represents a generic section of a document

article Represents an independent piece of the document whole

aside Represents a piece of content slightly related to the document whole

hgroup Represents the header of a section

header Represents a group of introductory or navigational aids

footer Represents the footer of a section of the document

nav Represents a section of the document intended for navigation

dialog Used with dt and dd elements to mark up a conversation

figure Used to provide a caption to embedded content

video, audio Used to provide multimedia content

embed Used to provide plug-in content

mark Used to designate marked content

progress Used to provide a status or progress bar

meter Used to represent a measurement

time Represents a date or time

ruby, rt, and rp Used to provide an interface into Ruby applications

canvas Used to contain rendered text or shapes

command Used to reference a user-accessible command

details Used to reference additional controls available to the user

datalist Used to help build combo-boxes

output Represents output generated by another source

New attributes by element
Several existing elements have been given additional attributes to help extend HTML5’s capabili-
ties, as shown on the following table.

301

Part I: Creating Content with HTML

Element(s) Attribute(s)

a, area media, ping, target

area hreflang, rel

base target

li value

ol start

meta charset

input autofocus (except type of hidden)

input, textarea placeholder

input, output, select, textarea,
button, and fieldset

form

input required (except type of hidden, image, or
button), autocomplete, min, max, multiple,
pattern, and step

fieldset disabled

form novalidate

input, button formaction, formenctype, formmethod,
formnovalidate, and formtarget

menu type, label

style scoped

script async

htmll manifest

link sizes

ol reversed

iframe seamless, sandbox

New input types (form input element)
The input element’s type attribute supports several new values to aid in the input of additional
values:

tel
search
url
email
datetime
date

302

Chapter 18: The Future of HTML: HTML5

month
week
time
datetime-local
number
range
color

These new input types provide HTML form support of new data formats without requiring addi-
tional scripting.

New global attributes
The new specification also adds more global attributes, shown in the following table, that can
be applied to most elements, giving the author better control over specifying or exempting
element-level features.

Attribute Use

contenteditable Marks an editable area of the document

contextmenu Points to an optional context menu

data- Author-defined attributes

draggable Marks content as draggable (via mouse)

hidden Remove element

item, itemprop, subject Provides Microdata elements

role, aria- Used to provide assistive technology

spellcheck Indicates that the content can be spell-checked

Deprecated elements
The following elements have been deprecated either in favor of other elements or because of their
frequent misuse or consistent confusion surrounding their use:

basefont
big
center
font
s
strike
tt
u
frame
frameset
noframes

303

Part I: Creating Content with HTML

acronym (use abbr instead)
applet (use object instead)
isindex
dir (use ul instead)

Deprecated attributes
The following attributes have been deprecated with HTML5 in favor of more consistent usage
(such as the use of styles to produce the same effect).

Attribute Deprecated from (Element)

rev, charset link, a

shape, coords a

longdesc img, iframe

target link

nohref area

profile head

version html

Name img (use id instead)

scheme meta

archive, classid, codebase, codetype,
declare, standby

object

valuetype, type param

axis, abbr td, th

Scope td

In addition, many presentation attributes have been deprecated in favor of styles, as shown in
the following table.

Attribute Deprecated from (Element)

align caption, iframe, img, input, object, legend, table,
hr, div, h1, h2, h3, h4, h5, h6, p, col, colgroup,
tbody, td, tfoot, th, thead, tr

alink, link, text, vlink body

background body

bgcolor table, tr, td, th, body

304

Chapter 18: The Future of HTML: HTML5

Attribute Deprecated from (Element)

border table, object

cellpadding, cellspacing table

char, charoff col, colgroup, tbody, td, tfoot, th, thead, tr

clear br

compact dl, menu, ol, ul

frame table

frameborder iframe

height td, th

hspace, vspace img, object

marginheight, marginwidth iframe

noshade hr

nowrap td, th

rules table

scrolling iframe

size hr

type li, ol, ul

valign col, colgroup, tbody, td, tfoot, th, thead, tr

width hr, table, td, th, col, colgroup, pre

Summary
As you can see from the information in this chapter, HTML continues to march forward toward
mainstream publishing mechanisms. The rift between content (HTML) and presentation (CSS)
is also becoming more pronounced, forcing Web developers to use the right tool for the right
purpose. Although HTML5 is still quite a ways off, its feature set will provide some welcome
changes.

305

Part II

HTML Tools and
Variants

IN THIS PART

Chapter 19: Web Development
Software

Chapter 20: Publishing Your Site

Chapter 21: An Introduction to
XML

Chapter 22: Creating Mobile Doc-
uments

Chapter 23: Tidying and Validat-
ing Your Documents

Chapter 24: HTML Tips and Tricks

Web Development
Software

IN THIS CHAPTER
Text-Oriented Editors

WYSIWYG HTML Editors

Other Tools

As you have seen throughout this book, Web development is an area
rich in features. The Web has come a long way from its early begin-
nings as a text-only medium. As online documents get more com-

plex, the tools to create them become more powerful. Although you can still
create large, feature-rich sites with a simple text editor, using more complex
and powerful tools can make the task much easier. This chapter introduces
several popular tools that can help you create the best online documents
possible.

Note
This chapter provides several recommendations for tools you should consider
for online document development. However, the recommendations are just
that, recommendations. Only you can decide what tools will work best for
you. Luckily, most of the tools covered in this chapter have demo versions
you can download and try out for a limited time. Be sure to visit the websites
referenced for each tool to get more information and perhaps even download
a trial version. �

Text-Oriented Editors
Text-oriented editors have been around since the dawn of the cathode-ray
tube (CRT), the technology used in most computer display screens. How-
ever, today’s editors can be quite powerful and feature-rich, doing much
more than simply enabling you to create text documents. This section covers
the latest in text-oriented editing.

Simple text editors
Simple text editors — such as Windows Notepad or vi on UNIX/Linux — provide
an invaluable service. They enable you, without intervening features, to

309

Part II: HTML Tools and Variants

easily edit text-based documents. As such, they are a logical addition to your Web development
toolkit.

However, although you could create an entire site with one of these simple tools, there are better
tools for actual creation.

Smart text editors
Smart text editors are editors that understand what you are editing and attempt to help in var-
ious ways. For example, Linux users should look into vim or Emacs and enable syntax high-
lighting when editing documents with embedded code (HTML, CSS, JavaScript, and so on).
Figure 19-1 shows an example of a large PHP file in vim.

FIGURE 19-1

Syntax highlighting can help you avoid simple errors.

Although it may be hard to tell in the black-and-white figure, various elements have been col-
orized to show where they begin or end. Using methods like this, the editor keeps you abreast
of what elements have been opened and which have been closed. For example, the editor may
highlight quoted text in green. If most of the document turns green, it is likely that you forgot
to close a quote somewhere. These editors also offer features such as auto-indenting, which can
help you keep your documents structured.

Windows users have a few options for smart editors, as well. My favorite is TextPad, which
uses document class templates to understand the syntax of almost any coded document.

310

Chapter 19: Web Development Software

TextPad is loaded with standard editor features. You can find TextPad on the Internet at
www.textpad.com.

HTML-specific editors
A few non-WYSIWYG editors understand HTML and provide specific features to help you code.
However, HomeSite (now owned by Adobe) has always stood out from the crowd.

HomeSite provides the next level of functionality for HTML editing with special tools for entering
tags and their parameters, codes for entities, macros for repeating steps, and more. Although
the program is a bit dated (no support for HTML version 4.01), it is still a great choice for a
full-featured HTML text editor.

Figure 19-2 shows the HomeSite main interface, and Figure 19-3 shows a tab of the dialog for
creating a <table> tag.

FIGURE 19-2

HomeSite includes several features to make HTML editing a breeze.

311

Part II: HTML Tools and Variants

TopStyle Lite, which installs with HomeSite, provides an interface for editing and managing your
external style sheets.

Visit Adobe’s website for more information on HomeSite (www.adobe.com/products/
homesite/).

FIGURE 19-3

HomeSite includes comprehensive mechanisms for building more complex tags such as tables.

Note
In 2005, Adobe Systems, Inc., acquired Macromedia lock, stock, and barrel. Most former Macromedia prod-
ucts are still available on the market, but under the Adobe brand name. �

WYSIWYG HTML Editors
Just as what you see is what you get (WYSIWYG) editors revolutionized word processing, WYSI-
WYG HTML editors have revolutionized Web publishing. Using such tools, designers can design
their pages visually and let the tools create the underlying HTML code. This section highlights
the three most popular visual tools available for WYSIWYG editing.

NetObjects Fusion
NetObjects Fusion is another site-level design tool that offers WYSIWYG editing. The advan-
tages of using NetObjects Fusion include easy management of entire sites, pixel-accurate designs,
and a plethora of features that make publishing on the Web a breeze. Such features include the
following:

� Advanced scripting support

� Automatic e-commerce catalog building

312

Chapter 19: Web Development Software

� Enhanced photo gallery support

� Hooks for including external pages and code

� Incremental publishing capability

� Flexible meta tag management

� Powerful, full-site management tools

Note
NetObjects Fusion should not be confused with Macromedia’s ColdFusion product. The former is owned
by Website Pros and is a WYSIWYG Web editor. The latter is owned by Macromedia and is a database
integration tool for the Web. �

Figure 19-4 shows the page design view for NetObjects, and Figure 19-5 shows the site layout
view. In the latter, you can easily create, delete, and move pages around your site — NetObjects
Fusion will automatically adjust all links, navigation bars, and other references between
the pages.

FIGURE 19-4

NetObjects Fusion provides a good framework for designing pages visually.

313

Part II: HTML Tools and Variants

In addition to the visual tools, NetObjects Fusion provides many ways to customize the actual
code behind your documents as well. You can learn more about NetObjects Fusion on the Web
at www.netobjects.com.

FIGURE 19-5

At the site level, NetObjects Fusion gives you complete control over your site’s organization;
behind the scenes, it adjusts links between pages automatically.

Dreamweaver
The king of all Web document editing programs is currently Adobe Dreamweaver. Combining
the best visual and nonvisual editing tools with several development features, Dreamweaver is
the most feature-rich program covered here.

314

Chapter 19: Web Development Software

Dreamweaver provides as much or as little automation during creation of new documents as you
would like. You can create the entire site in text mode, editing HTML code directly. Alterna-
tively, you can use the WYSIWYG design editor to create your documents visually. Figure 19-6
shows Dreamweaver’s main editing window, displaying both the code and visual design win-
dows. Figure 19-7 shows the Check Browser Compatibility feature, which enables you to test
your code against the compatibility of specific browsers.

The feature-rich nature of Dreamweaver does come at a price — it is easily the most complicated
program covered in this chapter. The learning curve for Dreamweaver can be quite steep, even
to create simple sites. However, once you get used to Dreamweaver, it is easy to appreciate its
powerful features.

You can learn more about Dreamweaver at www.adobe.com/products/dreamweaver/.

FIGURE 19-6

Dreamweaver’s main editing window can show the code view, the design (visual) view, or both.

315

Part II: HTML Tools and Variants

Firefox Add-ons
Firefox is a favorite browser for Web developers for one reason: add-ons. Using Firefox’s robust
application programming interface, developers can create simple widgets or extensive programs
to add to the Firefox interface.

Several add-ons, Firebug in particular, enable you to view and edit your documents in unique
ways. Firebug, for example, enables you to inspect individual elements to see their styles, where
the styles are applied from (given the cascade), and even edit the HTML and styles on the cur-
rent live document to help tweak your formatting. Figure 19-8 shows Firebug in action.

Find more information on Firefox, Firebug, and other Firefox add-ons at www.mozilla.org.

FIGURE 19-7

The Check Browser Compatibility feature checks your code against the compatibility of specific
browsers.

316

Chapter 19: Web Development Software

FIGURE 19-8

When inspecting an element, Firebug displays all the information on styles affecting the element
(their source and settings), and allows you to tweak the styles on the live document.

Other Tools
Tools to create HTML are only half of the equation when creating online documents. You must
also have tools available to do graphics editing and supply any multimedia content you use. This
section covers a handful of additional tools necessary to create rich, online content.

Graphics editors
Years ago, text-only Web pages were the norm. However, today’s Web is a visual feast, and your
documents must incorporate as much imagery as possible in order to be noticed.

317

Part II: HTML Tools and Variants

Almost every operating system comes with at least one graphics editor, but the capabilities of the
included editors are quite limited, and you shouldn’t rely on them for much. The same goes for
graphics programs bundled with many scanners, printers, and other graphics peripherals.

Ideally, you should consider using both a vector-based and a raster-based editing program.
Vector-based editors use shapes and lines to create images, whereas raster-based editors use
individual dots (pixels) to create images. Vector-based images are traditionally more exact and
clear, but raster-based images allow for more visually striking effects. The best results can be
obtained using both — use the vector tools to create solid imagery, and the raster tools for
special effects and finishing work.

Note
Only raster-based images (specifically JPEG, GIF, and PNG images) are supported by common user
agents. �

Vector-based editing tools include the following:

� Adobe Illustrator
www.adobe.com/products/illustrator/main.html

� Adobe Freehand
www.adobe.com/products/freehand

Raster-based editing tools include the following:

� Paint Shop Pro Photo X2
http://store.corel.com/webapp/wcs/stores/servlet/ProductDisplay?
partNumber=OL PR12

� Adobe Photoshop
www.adobe.com/products/photoshop

� Adobe Fireworks
www.adobe.com/products/fireworks

� The GIMP
www.gimp.org

Note
Paint Shop Pro Photo X2 actually supports both raster and vector editing. �

Note that these tools can be quite expensive — the latest version of Photoshop is several hun-
dred dollars. Of course, Photoshop is without equal for raster editing; no other tool provides as
much power and extensibility. Paint Shop Pro Photo X2 is quite capable at around $100, and
The GIMP provides suitable editing without a price tag (it’s open source).

Adobe Flash
Adobe Flash is the staple for most multimedia on the Web. Flash provides an animation platform
with plenty of power via ActionScript, a flexible scripting language, and can be used for simple
buttons or full-blown product demos.

318

Chapter 19: Web Development Software

Although the interface is a bit idiosyncratic, Flash is an indispensable tool for online animation.
Figure 19-9 shows a Flash document in development.

The main draw of Flash is two-fold:

� It has become a standard on the Web that users expect.

� Flash can provide even complex animations in a small package (small file size).

Flash is another tool you should consider adding to your collection. You can learn more about
Flash at www.adobe.com/products/flash.

FIGURE 19-9

Flash can be used for simple or complex animations.

Summary
This chapter introduced you to a handful of HTML, CSS, and graphics editing tools you can use
to make the creation of Web documents easier. Of course, there are many more Web-oriented

319

Part II: HTML Tools and Variants

tools on the market; the ones presented here only scratch the surface. When evaluating tools for
your own use, keep in mind that there is a balance between cost and effectiveness. The tools
included on the free disc from your ISP may be very affordable, but implementing them may
wind up costing more than a tool you have to buy. The sweet spot lies somewhere in between,
in capable but budget-minded tools. Many software manufacturers provide evaluation copies of
their software that you can download and try before you purchase.

The next several chapters (20 through 24) continue the coverage of tools and utilities you can
employ to develop and deploy your documents.

320

Publishing Your Site

IN THIS CHAPTER
Introducing FTP

FTP Clients

Notable FTP Clients

Principles of Web Server File
Organization

Now that you have documents to deploy on the Web, how do you
actually move the files to the Web server? If you don’t have an
automated publishing tool (as covered in Chapter 19), you will

probably use File Transfer Protocol (FTP). This chapter provides an intro-
duction to FTP and explains how you can use it to deploy your files to a
server.

Introducing FTP
File Transfer Protocol was created to easily move files between computers on
the Internet. Dating back to the very early days of the Internet, FTP hasn’t
evolved much during the years it has been in service. FTP encapsulates
several functions to transfer files, view files on both sides of the connection,
and more.

FTP servers use the same protocol as the rest of the Internet: TCP/IP.
TCP/IP is a packet-switching protocol that enables computers all over
the world to communicate with one another via the Internet. The pro-
tocol uses well-defined ports — data doorways reserved for particular
applications — to segregate the types of information traveling over the
network. FTP uses TCP/IP ports 20 and 21. These ports are unique to the
FTP service, allowing a computer to run a Web server (port 80), an FTP
server (ports 20 and 21), as well as other services at the same time.

The FTP server sits patiently waiting for a client to request a connection on
port 21. The client opens a port greater than port 1024 and requests a con-
nection from the server. After the connection is authenticated — that is, a
user logs in — the client can initiate commands to transfer files, and so on.
When data is transferred between the client and the server, the server initi-
ates the connection using port 20 — the client uses one port higher than

321

Part II: HTML Tools and Variants

the port used for commands. Figure 20-1 shows a graphical representation of the connection and
port arrangement.

FIGURE 20-1

A typical FTP connection

Client

1026 1027

21 20

FTP
Server

Command

Data

One problem with the traditional FTP process is that the server must initiate the data connec-
tion. This requires that the server be able to access the requisite port on the client to initiate the
connection. If the client is using a firewall, the firewall might prevent the server from accessing
the correct port. Because the client port isn’t consistent, configuring the firewall to allow access
is problematic.

To solve this problem, a new mode of FTP was created. Passive mode (typically referred to as
PASV) allows the client to initiate both connections.

Note
If you are behind a firewall, you should always try to use passive mode. �

FTP Clients
The first FTP clients were text-only applications, meaning the connection is initiated and data is
transferred using textual commands. The latest FTP clients employ the same graphical interface
as most modern operating systems, using standard file manager-like interfaces to accomplish FTP
operations.

322

Chapter 20: Publishing Your Site

Note
Graphical FTP clients use the same methods and commands to communicate with the FTP server,
but typically hide the communication from the user. The term ‘‘client’’ comes from the fact that the
software — ‘‘application’’ by any other name — is connecting to a ‘‘server.’’ As such, the application
inherits the client moniker because of its role in the connection relationship. �

The following code example shows a typical dialogue using a textual FTP client. The client initi-
ates a connection, and the user logs in, gets a directory listing on the server, and then transfers a
file. For clarity, the commands entered by the user are in boldface:

$ ftp ftp.example.com
Connected to ftp.example.com.
220 ftp.example.com FTP server ready.
Name: sschafer
331 Password required for sschafer.
Password: ******
230 User sschafer logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd www
250 CWD command successful.
ftp> ls
200 PORT command successful.
150 Opening ASCII mode data connection for file list.
drwxr-xr-x 2 sschafer sschafer 4096 Jun 20 16:45 Products
drwxr-xr-x 2 sschafer sschafer 4096 Jun 16 18:41 About
drwxr-xr-x 2 sschafer sschafer 4096 Jun 6 15:16 Images
-rwxr-xr-x 1 sschafer sschafer 1571 Jun 12 17:58 index.html
drwxr-xr-x 2 sschafer sschafer 4096 Jun 15 04:16 Scripts
226-Transfer complete.
226 Quotas off
ftp> put index.html
local: index.html remote: index.html
200 PORT command successful.
150 Opening BINARY mode data connection for index.html.
226 Transfer complete.
2095 bytes sent in 0.3 secs (3.6 kB/s)
ftp> close
221 Goodbye.
ftp> quit
$

Figure 20-2 shows a graphical FTP application accessing the same site. The application shows
the file listing of the remote server. To transfer a file, the user simply drags the file into or out of
the application window to a local window or a destination pane within the same FTP application.
Notice the underlying FTP commands and output in the lower-right corner of the application.
Some graphical FTP client applications allow you to take manual control, entering various com-
mands as required.

323

Part II: HTML Tools and Variants

FIGURE 20-2

Graphical FTP clients use graphical user interface methods to transfer files.

Table 20-1 shows a list of common FTP commands.

TABLE 20-1

Common FTP Commands

Command Syntax Use

ascii ascii or asc Switch to ASCII mode for file transfers.

binary binary or bin Switch to binary mode for file transfers.

cd cd directory_name Change the remote directory.

close close Close the current connection to the server (log off).

get get filename Download a file from the server.

324

Chapter 20: Publishing Your Site

Command Syntax Use

lcd lcd directory_name Change the directory on the local machine.

ls ls [file_spec] List files on the server (in the current directory).

mget mget file_spec Download multiple files from the server.

mkdir mkdir directory_name Create a new directory on the server.

mput mput file_spec Upload multiple files to the server.

user user username Initiate login as username (prompt for password).

pasv pasv Enter passive mode.

put put filename Upload a file to the server.

quit quit Exit the client.

rmdir rmdir directory_name Remove a directory on the server.

open open server_address Open a new connection to the server.

Notable FTP Clients
Most operating systems include a textual FTP client, aptly named FTP. To use the client, type ftp
at a command prompt. For example, on Windows XP, you would click the Start button, choose
Run, type command, and press Enter. When the system prompt appears, type ftp and press
Enter. Once the FTP program loads, an ftp> prompt appears. Other operating systems utilize
different means to access their command prompt, but the concept is similar.

However, not all textual clients use the same commands or have the same options. Most clients
support a help command: Type help followed by the name of the command for which you need
help. Unfortunately, the standard help output simply tells you what the command does, not the
syntax or options.

Tip
There are many ways to place files on the Web server. The easiest, of course, is to create and edit the files
directly on the server. If you are using a development application, you can use its features to upload your
content (typically such programs use FTP to transfer files). �

Quite a few graphical FTP clients are available, from $100 commercial solutions to open-source
and shareware solutions. The following list is a subset of available clients:

� Cross-platform clients:

� FileZilla — This FTP client provides a host of valuable features in an open-source,
cross-platform (and free) package. FileZilla is available for Windows, Linux, Mac OS
X, and BSD platforms and supports a wide range of languages. Visit the FileZilla project
page at http://filezilla-project.org for more information.

325

Part II: HTML Tools and Variants

� FireFTP — This FTP client is courtesy of a free add-on for Firefox. It provides the basic
functionality to copy files to and from FTP sites as well as some nifty features like file
compression. More on FireFTP can be found at http://fireftp.mozdev.org/.

� Windows clients:

� FTP Voyager — This client enables you to transfer files between servers, resume
aborted downloads, and more. It also has a scheduler that can automatically transfer
files at set times.

� CoffeeCup FTP client — This freeware client contains the usual options for graphical
clients.

� CuteFTP — This popular client contains a number of features to make FTP transfers
easier. It provides a download queue, macro recording, and a scheduler to automate file
transfers.

� WS-FTP — This FTP client has the typical features found in other commercial solu-
tions.

� Linux clients:

� Desktop-specific clients — Both K Desktop Environment (KDE) and Gnome include
graphical clients specific to the desktop environment.

� Additional open-source solutions — Many graphical FTP clients are available for
Linux. Each distribution contains several from which you can choose. Even more are
available from various online sources.

Tip
Your Web browser can be used as a graphical client. Simply specify the FTP protocol (ftp:) and the server
address, as in the following example:

ftp://ftp.example.com �

If the server requires authentication, you will be prompted for your login information.

Principles of Web Server File Organization
Files on a Web server typically follow a tiered organization, placing subordinate pages in subdi-
rectories. Furthermore, supplemental files — scripts, images, and so on — are typically placed
in separate directories. Keeping the same hierarchical structure on both your computer and the
server is an advisable tactic. Figure 20-3 shows the organizational structure of a typical website.

Note
There really isn’t anything typical on the Web. As such, you should use a file and directory structure that
suits your needs. The examples in this chapter are just that, examples. The important thing is that you use
some logical organizational structure in your files and directories, and be consistent. �

326

Chapter 20: Publishing Your Site

FIGURE 20-3

Typical organization of a website

Root of site
Main/home page/document

Images
All images for the site

Scripts
External scripts

Products
Documents for the Products section

About
Documents for the About section

Contact
Documents for the Contact section

If your site is small enough, it can be contained in one single directory. A site with many files,
however, should be organized within several directories. Use your FTP client’s features to create
subdirectories, and transfer your files into the directories accordingly.

Summary
Although you can host HTML documents on a local machine, their true potential is realized
when you publish your documents on a public server, where the rest of the world can view
and interact with them. This chapter taught you the basics of FTP — the File Transfer Proto-
col of the Internet — which is used to transfer most of the world’s HTML documents from local
machines to public servers. You learned the basics of using an FTP application or client to con-
nect and transfer files. You also learned that most Web development applications have built-in
FTP services to help you get your content online.

The rest of this part covers variants of the version of HTML covered in Part I, including XML
(Chapter 21) and XHTML Basic (Chapter 22).

327

An Introduction
To XML

IN THIS CHAPTER
XML Basics

XML Syntax

Working with Document Type
Definitions

Introducing XML Schemas

Working with Schemas

Using XML

Extensible Markup Language (XML) is a popular scheme for represent-
ing data. Although created as a more portable version of Standard
Generalized Markup Language (SGML), XML lives mostly on the

application side of the computer world. XML is used to store preferences
and data from applications, provide a unified data structure for transferring
data, encapsulate syndicated feeds from websites, and more. XML standards
are being adopted by other data formats such as HTML (creating XHTML).

This chapter presents a primer on XML, including its format, methods, and
tools.

Note
Full coverage of XML can occupy an entire book on its own, and is there-
fore outside the scope of this one. In the case of the Web, XML is a bystander
technology, useful to know but not entirely critical for publishing on the Web.
However, because XHTML is XML-compliant, coverage is mandatory. If you
desire more information about XML, you can pick up a book dedicated to the
subject, such as WROX Beginning XML, Third Edition, WROX XSLT 2.0 Pro-
grammer’s Reference, Third Edition, or Wiley’s XML Weekend Crash Course
or XML Programming Bible. �

XML Basics
XML was created to bring the advantages of the SGML standard to smaller
platforms such as Web browsers. XML retains the flexibility of its older sib-
ling but has been redesigned for the Web, enabling it to be easily transmitted
via the Internet’s architecture and displayed with less overhead.

329

Part II: HTML Tools and Variants

The XML design strategy attempted to address the following points:

� Form should follow function. In other words, the language should be flexible enough to
encapsulate many types of data. Instead of shoehorning multiple forms of data into one
structure, the structure should be able to change to adequately fit the data.

� Documents should be easily understood by their content alone. The markup should
be constructed in such a way that there is no doubt about the content it frames. XML
documents are often referred to as self-describing because of this attribute.

� Format should be separated from presentation. The markup language should represent
the difference in pieces of data only, and should make no attempt to describe how the data
will be presented. For example, elements should be marked with tags such as <emphasis>
instead of (bold), leaving the presentation of the data (which should be emphasized,
but not necessarily bold) to the platform using the data.

� The language should be simple and easily parsed, with intrinsic error checking.

These attributes are evident in the goals stated in the W3C’s Recommendation for XML 1.0
(found at www.w3.org/TR/1998/REC-xml-19980210):

� XML shall be straightforwardly usable over the Internet.

� XML shall support a wide variety of applications.

� XML shall be compatible with SGML.

� It shall be easy to write programs that process XML documents.

� The number of optional features in XML is to be kept to the absolute minimum,
ideally zero.

� XML documents should be human-legible and reasonably clear.

� The XML design should be prepared quickly.

� The design of XML shall be formal and concise.

� XML documents shall be easy to create.

� Terseness in XML markup is of minimal importance.

As is, XML is ill suited for the World Wide Web. Because XML document elements can be
author defined, user agents cannot possibly interpret and display all XML documents in the way
the author intended. However, standardized XML structures are excellent for storing application
data. For example, consider the following applications of XML:

� The popular RSS syndication format defines particular element tags in XML format to
encapsulate syndicated news and blog feeds. This enables many applications to easily
disseminate the information contained within the feed.

� Several online statistic sites (computer game stats, and so on) store their information in
XML because it can be easily parsed by a variety of applications.

� Many applications store their preferences in XML-formatted files. This format proves to be
easily parsed, changed, and rewritten, as necessary.

330

Chapter 21: An Introduction To XML

� Many word-processing and other document-based applications (e.g., spreadsheets) store
their documents in XML format.

� Many business-to-business applications use XML to share and transfer data between each
other.

Note that while XML provides an ideal data structure for some applications, it should be used
only for smaller, sequential collections of data. Data collections that require random access or
have thousands of records would benefit from an actual database format, rather than XML.

Note
XHTML was designed to bring HTML into XML compliance (each element being properly closed, and so on),
not the other way around (to add extensibility to HTML). In short, XHTML adheres to XML standards but is
not itself an extensible markup language. �

XML Syntax
XML and XHTML follow many of the guidelines already set forth for HTML but are slightly more
stringent:

� Element and attribute names are case sensitive.

� All elements must be properly closed.

� Elements must be properly nested, not overlapping.

� All attributes must have values.

� All attribute values must be quoted.

Note
This book espouses the formatting syntax of XHTML, which is more exacting than straight HTML. As such,
you already know many of the conventions for XML. �

Within documents, the structure is similar to that of HTML, where element tags are used to
encapsulate content that may itself contain tag-delimited content.

The following sections outline the particular syntax of the various XML elements.

XML Declaration and DOCTYPE
Each XML document must begin with an XML declaration similar to the following:

<?xml version="1.0" encoding="UTF-8"?>

The declaration is <?xml?>, with version and encoding attributes. The version attribute
specifies the version of XML the document uses, and the encoding attribute specifies the char-
acter encoding used within the document’s content.

331

Part II: HTML Tools and Variants

As with other markup languages, XML supports Document Type Definitions (DTDs), which spec-
ify the rules used for the elements within documents using the DTD. Applications can then use
the DTD to check the document’s syntax. An XML document’s DTD declaration resembles that
of an XHTML document, specifying a SYSTEM or PUBLIC definition. For example, the following
DTD is used for OpenOffice documents:

<!DOCTYPE office:document-content PUBLIC
"-//OpenOffice.org//DTD OfficeDocument 1.0//EN" "office.dtd">

The following is an example of an XHTML document’s DTD:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Elements
XML elements resemble HTML elements. However, because XML is extensible, elements are gen-
erally not of the HTML variety. For example, consider the following snippet from an RSS feed,
presented in XML format:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="/externalflash/NASA_Detail/NASA_Detail.xsl"

type="text/xsl"?>
<rss version="2.0">
<channel>
<title>NASA Breaking News</title>
<link>http://www.nasa.gov/audience/formedia/features/index.html</link>
<description>A RSS news feed containing the latest NASA news
articles and press releases.</description>

<language>en-us</language>

<item>
<title>Atlantis Set for Return to Kennedy Space Center</title>
<link>./HQ_M07077_Atlantis_ferry_flight.html</link>
<description>The shuttle’s ferry flight aboard a modified 747

is expected to occur this weekend.</description>
<pubDate>Fri, 29 Jun 2007 00:00:00 EDT</pubDate>

</item>
<item>
<title>ISS Status Report: SS07-32</title>
<link>./HQ_SS0732_station_status.html</link>
<description>Operations and research occupied the crew this

week.</description>
<pubDate>Fri, 29 Jun 2007 00:00:00 EDT</pubDate>

</item>
<item>
<title>Satellite Captures First View of ‘Night-Shining’

Clouds</title>
<link>./HQ_07145_AIM_First_Light.html</link>
<description>A NASA satellite has captured the first occurrence

this summer of mysterious iridescent polar clouds that form 50

332

Chapter 21: An Introduction To XML

miles above Earth’s surface.</description>
<pubDate>Thu, 28 Jun 2007 00:00:00 EDT</pubDate>

</item>
<item>
<title>NASA Mars Rover Ready for Descent Into Crater</title>
<link>./HQ_07145_Rover_Victoria_Crater.html</link>
<description>NASA’s Mars rover Opportunity is scheduled to begin a

descent down a rock-paved slope into the Red Planet’s massive
Victoria Crater.</description>

<pubDate>Thu, 28 Jun 2007 00:00:00 EDT</pubDate>
</item>

</channel>
</rss>

In this case, the following elements are used:

� channel — The container for the channel, that is, the feed itself. The channel container
has the following subcontainers:
� title — The title of the channel or feed
� link — The link to the feed on the Web
� description — The description of the feed
� language — The language of the feed’s content

� item — The feed encapsulates each news item within an item element, which has the
following sub-elements:
� title — The title of the item
� link — A link to the item on the Web
� description — A short description of the item
� pubDate — The publication date of the item

Note that several elements have multiple contexts. For example, the channel and item elements
both provide context for title elements — the placement of each title element (usually its
parent) determines to what element the title refers.

Attributes
XML elements support attributes much like XHTML. Again, the difference is that the attributes
can be defined in accordance with the document’s purpose. Consider the following code snippet:

<employee sex="female">
<lastName>Moore</lastName>
<firstName>Terri</firstName>
<hireDate>2003-02-20</hireDate>

</employee>
<employee sex="male">
<lastName>Robinson</lastName>
<firstName>Branden</firstName>
<hireDate>2000-04-30</hireDate>

</employee>

In this example, the sex of the employee is coded as an attribute of the employee element.

333

Part II: HTML Tools and Variants

In most cases, the use of attributes instead of elements is arbitrary. For example, the preceding
example could have been coded with sex as a child element instead of as an attribute, as in the
following:

<employee>
<sex>female</sex>
<lastName>Moore</lastName>
<firstName>Terri</firstName>
<hireDate>2003-02-20</hireDate>

</employee>
<employee>
<sex>male</sex>
<lastName>Robinson</lastName>
<firstName>Branden</firstName>
<hireDate>2000-04-30</hireDate>

</employee>

The mitigating factor in deciding how to code data is whether the content is ever to be used as
data, instead of just a modifier. If an application will use the content as data, it’s best to code it
within an element where it is more easily parsed as such.

Comments
XML supports the same comment tag as HTML:

<!-- comment_text /-->

You can embed comments anywhere inside an XML document as long as the standard XML
conventions and corresponding DTD rules are not violated by doing so.

Non-parsed data
On occasion, you will need to define content that should not be parsed (interpreted by the appli-
cation reading the data). Such data is defined as character data, or CDATA. Nonparsed data is
formatted within a CDATA element, which has the following syntax:

<!CDATA [non_parsed_data]]>

Generally, CDATA elements are used to improve the legibility of documents by placing reserved
characters within a CDATA element instead of using cryptic entities. For example, both of the
following paragraph elements result in identical data, but the first is more legible because the
CDATA elements are used instead of entities:

The table element should be used instead of the pre element
whenever possible.

334

Chapter 21: An Introduction To XML

The <!CDATA [table]]> element should be used instead of the
<!CDATA
[pre]]> element whenever possible.

Entities
XML also allows for user-defined entities. Entities are content mapped to mnemonics — the
mnemonics can then be used as shorthand for the content within the rest of the document.
Entities are defined using the following syntax:

<!ENTITY entity_name "entity_value">

Entities are defined within a document’s DTD. For example, the following document prologue
defines "Acme, Inc." as the entity customer:

<?xml version="1.0"?>
<!DOCTYPE report SYSTEM "/xml/dtds/reports.dtd" [
<!ENTITY customer "Acme, Inc.">

]>

Elsewhere in the document the entity (referenced by &entityname;) can be used to insert the
customer name:

<report>
<title>TPS Report</title>
<date>2005-01-25</date>
<summary>The latest run of the regression test have yielded
perfect results. The engagement for &customer; can now be
completed and the final code delivered.</summary>

...

Entities can also be declared as external resources. Such external resources are generally larger
than a few words or a phrase, such as complete documents. A system entity, used for declaring
external resources, is defined using the following syntax:

<!ENTITY entity_name SYSTEM "URL">

For example, the following code defines a chapter01 entity that references a local document
named chapter01.xml:

<!ENTITY chapter01 SYSTEM "chapter01.xml">

The chapter01 entity can then be used to insert the contents of chapter01.xml in the current
document.

335

Part II: HTML Tools and Variants

Namespaces
The concept of namespaces is relatively new to XML. Namespaces enable you to group elements
together by their purpose using a unique name. Such groupings can serve a variety of purposes,
but are commonly used to distinguish elements from one another.

For example, an element named table can refer to a data construct or a physical object, such as
a dining room table:

<!-- Data construct in one document-->
<table>
<tr><th>Date</th><th>Customer</th><th>Amount</th></tr>
<tr><td>2005-01-25</td><td>Acme, Inc</td><td>125.61</td></tr>

...
</table>

<!-- Home furnishing definition in another document /-->
<table>
<type>Dining</type>
<width>4</width>
<length>8</width>
<color>Cherry</color>

</table>

If both elements are used in the same document there will be a conflict because the two refer
to two completely different things. This is a perfect place to specify namespaces. Namespace
designations are added as prefixes to element names. For example, you could use a furniture
namespace to identify the table elements that refer to furnishings:

<furniture:table>
<type>Dining</type>
<width>4</width>
<length>8</width>
<color>Cherry</color>

</furniture:table>

The prefix should be uniquely tied to a namespace using a namespace declaration with an appro-
priate xmlns attribute. The namespace declaration has the following form:

<prefix:tag xmlns:tag="url">

For example, using our furniture prefix with the table tag, we would have something similar to
the following:

<furniture:table xmlns:table="http://www.w3.org/XML/">

Note that the URL in the declaration serves only as a unique identifier — it is not perceived by
the XML parser as an actual Uniform Resource Identifier (URI) of any type and might not even
exist. It does, however, need to be unique within its sphere of influence.

336

Chapter 21: An Introduction To XML

Stylesheets
XML also offers support for stylesheets. Stylesheets are linked to XML documents using the
xml-stylesheet tag, which has the following syntax:

<?xml-stylesheet type="mime_type" href="url_to_stylesheet"?>

For example, to link a stylesheet to an XML document, you could use a tag similar to the
following:

<?xml-stylesheet type="text/css" href="mystyles.xsl"?>

Working with Document Type Definitions
As previously mentioned, an XML document that follows the syntax rules of XML is called a
well-formed document. You can also have, or not have, a valid document. A document is valid if
it validates against a DTD. Just as with HTML, an XML DTD is a document containing a list of
rules that define the structure of the XML document. For example, a DTD can dictate whether
all contact elements contain a phone element, as in the following code:

<contact>
<name>Jill Hennessy</name>
<address>111 East Main St.</address>
<phone>1-303-555-4444</phone>

</contact>

The preceding code fragment is well formed as it stands. However, you may wish to define rules
that more clearly delineate the purpose of each element and the position of each element within
the framework or document as a whole. You might also want to define how many times each
element can (or should) appear in the document.

A DTD can exist either outside the XML document that validates against it or within that same
document. If the DTD exists outside of the document, you must declare it within the XML doc-
ument so the XML parser knows you’re referring to an external DTD, similar to the following:

<!DOCTYPE root SYSTEM "filename">

For example, for our contact XML document, an external DOCTYPE declaration might look like
this (the DOCTYPE declaration is in bold):

<?xml version="1.0"?>
<!DOCTYPE contact SYSTEM "contact.dtd">
<contact>

<name>Jill Hennessy</name>
<address>111 East Main St.</address>
<phone>1-303-555-4444</phone>

</contact>

The definitions would then be placed in a separate file, contact.dtd, accessible by the
document.

337

Part II: HTML Tools and Variants

You can also place the DOCTYPE rules within the XML document itself, as in the following
example:

<?xml version="1.0"?>
<!DOCTYPE contact [
<!ELEMENT contact (name, address, phone)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT phone (#PCDATA)>

]>
<contact>

<name>Jill Hennessy</name>
<address>111 East Main St.</address>
<phone>1-303-555-4444</phone>

</contact>

Although DTDs are not XML documents, DTD and XML structure alike is defined using the fol-
lowing core components of XML:

� Elements

� Attributes

� Entities

� PCDATA

� CDATA

Each of these is described in the sections that follow.

Using elements in DTDs
Elements are the main data-containing components of XML. They are used to structure a docu-
ment. You’ve seen them in HTML, and the core principles are the same as that of HTML. Ele-
ments can contain data or be empty. If they are empty they normally include an attribute, but it
isn’t a requirement. The HTML br and img elements are good examples of empty elements, as
they don’t encapsulate any data.

XML elements are declared with an element declaration using the following syntax:

<!ELEMENT name datatype>

The first part of the declaration (!ELEMENT) says that you are defining an element. The next part
(name) is where you declare the name of your element. The last part (datatype) declares the
type of data that an element can contain. An element can contain the following types of data
when defined by DTDs:

� EMPTY data, which means there is no data within the element
� PCDATA, or parsed character data
� One or more child elements

338

Chapter 21: An Introduction To XML

Using element declaration syntax for empty elements
Empty elements are declared by using the keyword EMPTY:

<!ELEMENT name EMPTY>

For example, to declare an empty rug element, you would write the following:

<!ELEMENT rug EMPTY>

This element would appear as follows in an XML document:

<rug />

Using element declaration syntax for elements with PCDATA
Elements that do not contain any child elements and contain only character data are declared
with the keyword #PCDATA inside parentheses, like this:

<!ELEMENT name (#PCDATA)>

A typical example of such an element follows:

<!ELEMENT note (#PCDATA)>

An XML parser might then encounter an actual note element that looks like this:

<note>The saunas will be closed for maintenance all of next
week. Please be sure to let your clients know.</note>

As you can see, the note element contains only text (PCDATA), and no child elements.

Using element declaration syntax for elements with child elements
Elements can contain sequences of one or more children, and are defined with the name of the
children elements inside parentheses:

<!ELEMENT name (child_name)>

If you have more than one child element, separate each element with a comma:

<!ELEMENT name (child_name_1, child_name_2)>

An example, using the code you saw earlier for the contact document, might look like this:

<!ELEMENT contact (name, address, phone)>

Declaring the number of occurrences for elements
You can also declare how often an element can appear within another element by using an
occurrence operator in your element declaration. The plus sign (+) indicates that an element must

339

Part II: HTML Tools and Variants

occur one or more times within an element. Therefore, if you create the following declaration,
the phone element must appear at least once within the contact element:

<!ELEMENT contact (phone+)>

You can declare that a group of elements must appear at least one or more times:

<!ELEMENT contact (name, address, phone)+>

To declare that an element can appear zero or more times (in other words, it’s an optional ele-
ment), use an asterisk instead of a plus sign, as in the following:

<!ELEMENT contact (phone*)>

If you want to limit an element to zero or one occurrence (meaning it can’t appear more than
once), use a question mark (?) operator instead:

<!ELEMENT contact (phone?)>

The following XML would not be valid when the declaration uses a ? operator for the phone
element:

<contact>
<phone>303-555-4444</phone>
<phone>303-555-4447</phone>

</contact>

You can also use a pipe operator (|) to indicate that one element or another element can be con-
tained within an element:

<!ELEMENT contact (name,address,phone,(email | fax))>

In the preceding declaration, the sequence of name, address, and phone elements must all
appear in the order shown, followed by either the email or fax elements. This means the fol-
lowing XML is valid:

<contact>
<name>Jill Hennessy</name>
<address>111 East Main St.</address>
<phone>1-303-555-4444</phone>
<email>jill@oasisoftranquility.com</email>

</contact>

However, the following XML would not be valid if validating against the same DTD:

<contact>
<name>Jill Hennessy</name>
<address>111 East Main St.</address>
<phone>1-303-555-4444</phone>
<email>jill@oasisoftranquility.com</email>
<fax>303-555-4447</fax>

</contact>

340

Chapter 21: An Introduction To XML

Using attributes in DTDs
Attributes define the properties of an element. For example, in HTML, the img element has an
src property, or attribute, that describes where an image can be found.

To define attributes for elements, you use an ATTLIST declaration. The ATTLIST declaration has
the following format:

<!ATTLIST element_name attribute_name
attribute_type default_value>

The element_name and attribute_name parameters are what you would expect — the ele-
ment to which the attribute applies and the name of the actual attribute. The attribute_type
and default_value parameters are more complex, as they must handle several different values.

Table 21-1 shows the various values possible for the attribute_type parameter.

TABLE 21-1

Attribute Types

Value Definition

CDATA Character data

(value|value|...) Enumerated data

ID Unique ID

IDREF ID of another element

IDREFS List of IDs of other elements

NMTOKEN An XML name

ENTITY An entity

ENTITIES A list of entities

NOTATION Name of a notation

xml: A predefined value

Table 21-2 shows the list of acceptable values for the default_value of the attribute.

For example, the following DTD declaration defines a phonenumber element with a default
type attribute of home:

<!ELEMENT phonenumber (#PCDATA)>
<!ATTLIST phonenumber type CDATA "home">

341

Part II: HTML Tools and Variants

TABLE 21-2

Default Value Settings

Value Definition

value The attribute has a default value of value.

#REQUIRED The attribute is always required in the element.

#IMPLIED The attribute does not need to be included in the
element.

#FIXED value The attribute has a default value of value and that
value is fixed — it cannot be changed by the author.

To limit the values of the type attribute to home, work, cell, or fax — with a default of
home — you could change the declaration as follows:

<!ATTLIST phonenumber type (home|work|cell|fax)>

Using entities in DTDs
You saw how to create entities in XML in the ‘‘Entities’’ section of this chapter. As a reminder,
you use an ENTITY declaration of the following syntax:

<!ENTITY entity_name "entity_value">

Entities are defined within a document’s DTD. For example, the following document prologue
defines "Acme, Inc." as the entity customer:

<?xml version="1.0"?>
<!DOCTYPE report SYSTEM "/xml/dtds/reports.dtd" [
<!ENTITY customer "Acme, Inc.">

]>

Elsewhere in the document the entity (referenced by &customer;) can be used to insert the
customer name.

Using PCDATA and CDATA in DTDs
PCDATA is parsed character data, which means that all character data is parsed as XML; any
starting or closing tags are recognized, and entities are expanded. Elements contain PCDATA.

CDATA is data that is not parsed by the processor. This means that tags are not recognized, and
entities are not expanded. Attributes do not contain PCDATA; they contain CDATA.

342

Chapter 21: An Introduction To XML

Introducing XML Schemas
However important, DTDs can be somewhat limiting. Consider, for example, the following XML
document:

<datatypes>
<Boolean>true</Boolean>
<integer>1</integer>
<double>563.34</double>
<date>06-01-2007</date>

</datatypes>

As far as DTD rules might be concerned, every element contains character data. The value for
the integer element is not actually an integer, and the date isn’t a date. This is because DTDs
don’t have mathematical, Boolean, or date types of data.

The W3C introduced another rules development methodology called XML Schema to handle
richer data typing and more granular sets of rules that allow for much greater specificity than
DTDs. In addition to the types of rules DTDs manage, schemas manage the data types allowed
in an element, such as Booleans and integers.

The use of datatyping is especially important because it facilitates working with traditional
databases and application program interfaces (APIs) based on Java, C++, and other languages,
such as JavaScript.

Working with Schemas
Now that you’re familiar with DTDs, it should be fairly easy to see how their concepts can
extend to a greater range of datatypes. XML Schema uses XML syntax to develop rule sets, so it
is a bit more intuitive than the DTD syntax shown earlier in the chapter.

Recall that an example earlier created a simple XML document for contacts derived from
contact.dtd. The following listing shows the same principles at work in a schema. Pay
particular attention to the xs:sequence xs:element children (in bold) that live in the
xs:complexType element:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.tumeric.net/schemas"
xmlns="http://www.tumeric.net/schemas"
elementFormDefault="qualified">
<xs:element name="contact">

<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="address" type="xs:string"/>
<xs:element name="city" type="xs:string"/>

343

Part II: HTML Tools and Variants

<xs:element name="state" type="xs:string"/>
<xs:element name="postalcode" type="xs:string"/>
<xs:element name="age" type="xs:integer" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Note
The contact element is a complex type of element because it contains other elements. If an element isn’t
defined to contain child elements, it’s a simple type of element. �

In a DTD, the sequence of elements that should appear in the document is defined by placing
a comma-delimited list of the elements in an element definition. In XML Schema, a sequence is
defined by creating a sequence of elements in a specific order within an xs:sequence element.
This is part of the larger definition of the XML document’s root element, which is the contact
element. Note the use of the type attribute in the xs:element elements, which defines the
datatype of each element.

Numerous datatypes are available for XML elements using schema. If you’re familiar with the
Java programming language, it might help you to know that most of the XML Schema datatypes
are similar to Java datatypes. If you’re not familiar with Java, there are four basic datatypes:

� Numerical (such as integer and double)

� Date

� String

� Booleans

Tip
You can find out the specifics of various datatypes available in XML Schema at www.w3.org/TR
/xmlschema-2. �

You can also place your schema in an external document and reference it from within your XML
document. To reference an external schema in an XML document, use the following syntax:

<?xml version="1.0"?>
<contact xmlns="http://www.tumeric.net/schemas"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.on-target-games.com/schemas/contact.xsd" >

<name>Johhny Rude</name>
<address>111 East Onion Ave.</address>
<city>Big City</city>
<state>CA</state>
<postalcode>96777</postalcode>
<phone>1-323-456-4444</phone>

344

Chapter 21: An Introduction To XML

<fax>test</fax>
<email>rude@rude.com</email>

</contact>

The schema is referenced through the namespace for the document. The specific syntax for the
namespace declaration looks like this:

xmlns="http://www.tumeric.net/schemas"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.on-target-games.com/schemas/contact.xsd"

The other two lines of code are additional namespaces, which serve as identifiers. They tell a
parser that elements associated with them are unique and may have specially developed defi-
nitions. The important part of the namespace is the Uniform Resource Identifier (URI), which
is what gives a namespace its unique identity. When elements live within a specific namespace
governed by a schema, they must adhere to the rules of that schema.

The first namespace in the preceding code fragment refers to a namespace established in the
schema that uniquely binds the schema to a specified resource, in this case a website. You don’t
have to refer to a website, and the reference is not actually a physical pointer. Instead, the URI is
simply an easy way to establish identity because a website should be unique. While it isn’t guar-
anteed to be unique, because anyone can hijack your website address name and use it for their
own schema, using a website address has become fairly standard practice. Instead of a website
name, you could use a long mash of characters, as in the following example:

xmlns="hk45kskds-scld456ksaldkttsslae697hg"

The second namespace refers to the W3C’s schema location so that XML processors will val-
idate the XML document against the schema. This is necessary because you then need to call
the resource you’re using — in this case, a schema that can be found on the path named in the
xsi:SchemaLocation attribute. When the processor finds the schema, it attempts to validate
the XML document as the document loads. If the XML document doesn’t conform to the rules
you set forth in the schema definition, an error will result (assuming your parser can work with
XML Schema).

Using XML
Actual use of an XML document requires that the document be transformed into a usable format.
There are many means and formats to translate XML — the limits are governed only by your
imagination and the tools at hand.

Viewing XML documents doesn’t require special tools. Many of the modern user agents assemble
various functionality to view XML documents and even add capabilities such as tag highlighting
and the ability to collapse portions of the document, as shown in Figure 21-1, where Internet
Explorer is displaying an RSS document.

345

Part II: HTML Tools and Variants

FIGURE 21-1

Internet Explorer is able to render XML documents in a fairly robust manner.

Extensible Stylesheet Language Transformations
Extensible Stylesheet Language Transformations (XSLT) change XML documents into formatted
documents and can rearrange document contents to generate new document elements. XSLT
takes two items as its input: the XML document (sometimes referred to as the source tree) and a
stylesheet to determine the transformation. The output document (sometimes referred to as the
result tree) is in the desired format, ready for output to the desired device.

Many tools are available to help you manage XML documents and perform XSLT, including
many open-source solutions (search for ‘‘XSLT’’ on www.sourceforge.org).

XML editing
You have many options for editing XML files. Because XML is a text-only format, you can use
any text editor (Emacs, vi, Notepad, and so on) to create and edit XML documents. However,
dedicated XML editors make the editing job easier by adding syntax highlighting, syntax check-
ing, validation, auto-code completion, and more. Following are some XML text editing options:

346

Chapter 21: An Introduction To XML

� Many open-source XML editors are available (search ‘‘XML editor’’ on http://
sourceforge.org).

� Lennart Staflin has developed a major mode for Emacs called PSGML (www.lysator.liu
.se/projects/about psgml.html).

� XMetal — formerly owned by Corel, now owned by Blast Radius — is a well-known,
capable (albeit commercial and expensive) XML editor (www.xmetal.com).

� XMLSpy, by Altova, is another capable XML editor in the same price range as XMetal,
although the personal edition is free (www.altova.com).

� <oXygen/>, by SyncRO Soft Ltd., is a lower-cost, multiplatform XML editor and XSLT
debugger (www.oxygenxml.com).

XML parsing
Many XML parsing applications are available, including many open-source applications (search
for ‘‘XML parsing’’ on http://sourceforge.org). In addition, there are XML parsing modules
for most programming languages:

� James Clark’s XML parser, expat, is well known as the standard for XML parsing
(http://expat.sourceforge.net and www.jclark.com/xml/expat.html).

� Many XML modules are available for Perl via CPAN (www.cpan.org).

� Several XML tools are available for Python, including the many found on the Python web-
site (http://pyxml.sourceforge.net/topics).

� PHP has a handful of XML functions built in as extensions to support expat
(www.php.net/manual/en/ref.xml.php).

� The PHP Extension and Application Repository has several additional extensions for XML
maintenance and manipulation (http://pear.php.net).

Summary
This chapter covered the basics of XML, a fairly robust and extensible markup language that
can be used to represent a wide range of data. You learned how similar XML and HTML were
in structure, but also how different XML can be to suit its purposes. You learned how an XML
document is defined, its elements declared, and how the language can be extended.

The rest of this part of the book covers XHTML Basic, as well as how to clean up and validate
your documents, and presents a handful of HTML tips and tricks. The next part of the book
covers CSS, the other half of the Web document equation.

347

Creating Mobile
Documents

IN THIS CHAPTER
Understanding the Evolution of

the Mobile Web

XHTML Basic 1.1

Mobile Web Development
Tools

As I’ve repeatedly pointed out, the Web and its technologies have
grown up. Starting as a simple, text-only medium, the Web is now
capable of delivering almost any kind of media. The underlying tech-

nologies, HTML and HTTP, have also evolved to better support this growth.

One inevitable side-effect of a popular delivery technology is its rapid
adoption by other media devices. Today, it isn’t just Web browsers on
PCs that access Web content and use Web-related technologies — devices
such as mobile phones, mall kiosks, and even ATMs utilize the technology.
However, many of these devices have limited resources and cannot make
full use of HTML or display the same rich content that a dedicated PC
browser can. As a result, if you intend to deliver content via one of these
resource-constrained devices, you must limit the scope of your code
appropriately.

This chapter covers XHTML Basic, a specification designed for smaller
devices. It also covers some ancillary technologies that help deploy content
to these devices.

Tip
Before taking the time to create content for mobile devices, ask yourself these
questions:

� Does my audience need my content on their mobile devices?

� Does my content lend itself to mobile devices?

� Can I spend the time and other resources to keep both my mobile and
traditional content up-to-date and in sync?

If you answer even one of these questions with a ‘‘no,’’ then creating and
maintaining mobile content is not appropriate for you. �

349

Part II: HTML Tools and Variants

Understanding the Evolution of the
Mobile Web
If you choose to develop Web content for mobile devices, it is important for you to under-
stand the evolution of those devices and their relationship to the Web. This history is important
because the mobile landscape is very different from that of the normal Web. The capabilities of
mobile devices tend to be quite limited, and in many cases devices are quite different from one
another — from the markup language they understand to their individual capabilities and their
connectivity to the Internet (or lack thereof).

The following sections provide a short introduction to these topics.

The first, dark years of mobility
Web-enabled mobile devices have been around for many years. In the late 1990s, several cellular
phones were launched with Web features. In the U.S., the technology was backed by a popular
phone manufacturer (Nokia) and a mobile connectivity company (Openwave). The two compa-
nies created a protocol for mobile data connectivity called Wireless Access Protocol, or WAP.
They also created a new minimalistic markup language, Wireless Markup Language (WML).
WAP protocol used special gateways for mobile devices to connect to and receive their content,
and WML language was very different from normal Web markup specifications like HTML. How-
ever, mobile devices were able to receive Web-like content.

Around the same time, the Japanese mobile communications company NTT DoCoMo launched
its i-Mode service in Japan, bringing Web-like content to mobile devices. NTT DoCoMo created
another HTML variant, Compact HTML, to support its content.

Note
Throughout this section, I use the phrase ‘‘Web-like content’’ because the early mobile content was not
delivered via Web standard markup (HTML) or the standard Internet gateways. The content was coded in
WML or Compact HTML, and as such could not be as rich. In addition, because it was delivered via pro-
prietary gateways, it was prone to being filtered, and most of the content was created and delivered by the
service provider — it was unusual to be able to reach a site of the user’s choice. Therefore, the content was
only ‘‘Web-like.’’ �

As mobile connectivity became more popular, and even expected, new devices appeared with
even more capable user agents. However, more players in the market meant more proprietary
solutions. Consumers found that what worked on one phone would not work on another, and
the expectation of being able to browse the actual Web was an unrealized one. Thankfully, these
consumer issues did not go unnoticed for long.

350

Chapter 22: Creating Mobile Documents

The Open Mobile Alliance and other standards
Several companies realized the shortcomings of mobile connectivity and the divergence of tech-
nologies taking place, and formed the Open Mobile Alliance. This alliance sought to help create
better, more globally adopted standards and generally improve the mobile connectivity experi-
ence. Several new, exceedingly capable user agents began appearing on devices, while proprietary
gateways began disappearing.

Around the same time as the formation of the Alliance, the W3C put together a mobile markup
specification designed to bring more order to the mobility market. The new standard, known as
XHTML Basic, was developed as a minimal set of XHTML tags for mobile user agent support.
The Open Mobile Alliance embraced the standard and expanded it to create the XHTML Mobile
Profile standard, designed to be adopted by future mobile user agents to enable a more capable
and rich browsing experience.

As with everything else in the mobile environment, the new standards were met with spotty
acceptance and adoption. Most mobile user agent vendors chose to support XHMTL Basic,
but not the expanded Mobile Profile specification. A few vendors with more capable browsers
(who were members in the Open Mobile Alliance) chose to support the expanded specification,
enabling their users to enjoy a more rich experience while still being backward compatible with
XHTML Basic.

However, as you can probably guess, most content developers chose to develop for XHMTL
Basic, ensuring that the widest possible audience could use their content.

Note
Older devices (i.e., those two years or older as of this writing) support only WML or one of the older WAP
variants. Even user agents that render almost perfect XHTML display their results on smaller screens, have
less memory to utilize, and so on. Keep these points in mind as you develop your content — especially if
owners of older devices are part of your target audience. �

The bottom line
The bottom line of this retelling of mobile Web history is this: Although standards have evolved
and browser manufacturers are adopting them, you can never be completely certain what brows-
ing capabilities your audience will possess.

Coding to XHTML Basic is a fairly safe bet, but when possible it is best to test several devices in
your target audience for compliance with your code.

Note
In the last few years, Web technology on mobile devices has leaped ahead in capabilities. A few user agents,
running on select handheld devices, can interpret and display standard HTML content. In rare cases, the

351

Part II: HTML Tools and Variants

user agents can even support more advanced technologies like Flash. However, when developing for hand-
held devices, never assume that such capabilities will be available to your entire audience; endeavor to
create content for the most basic of devices. �

XHTML Basic 1.1
XHTML Basic was developed as a subset of XHTML and is defined using a method known as
XHTML Modularization. XHTML Modularization is a methodology for creating a markup lan-
guage by first defining smaller components and then defining how those components fit together
to create the entire language.

Note
The current XHTML Basic 1.1 specification can be found at www.w3.org/TR/xhtml-basic/. �

The XHTML Basic 1.1 doctype
As with any other Web document, XHTML Basic documents must start with a proper doctype.
In the case of XHTML Basic 1.1, the document header should be as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN"

"http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">

Also, to ensure that your documents’ file type is interpreted correctly from their name alone, they
should be saved with a .xhtml extension, not .htm or .html.

XHTML Basic 1.1 elements
Because XHTML Basic was patterned after XHTML, you will find most of the elements familiar
in structure, scope, and usage. Table 22-1 lists the modules created for XHMTL Basic, and the
elements present in each.

TABLE 22-1

XHTML Basic 1.1 Modules and Related Elements

Module Elements

Structure Module body, head, html, title

Text Module abbr, acronym, address, blockquote, br, cite, code, dfn, div,
em, h1, h2, h3, h4, h5, h6, kbd, p, pre, q, samp, span, strong, var

Hypertext Module a

List Module dl, dt, dd, ol, ul, li

352

Chapter 22: Creating Mobile Documents

Module Elements

Basic Tables Module caption, table, td, th, tr

Image Module img

Object Module object, param

Presentation Module b, big, hr, i, small, sub, sup, tt

Meta Information Module meta

Link Module link

Base Module base

Intrinsic Events Module event attributes

Scripting Module script, noscript

Stylesheet Module style element

Style Attribute Module (Deprecated) style attribute

Target Module target attribute

Unless otherwise indicated in Table 22-1, the items in the Elements column are tag
elements —
, <h5>, , and so forth. Attributes are properly noted.

It is interesting to note that XHTML Basic retains all of the text formatting elements (including a
few deprecated in HTML 4.01), but deprecates the style attribute, disallowing style definitions
within tag elements.

Note
Most mobile devices are not JavaScript enabled, so you should not use JavaScript in any of your documents
meant for mobile users. Instead, consider the use of server scripting technologies — PHP, Perl, Python,
and so on — to do data processing on the back end to present dynamic, but compliant, XHTML Basic
documents. �

Special considerations
Although the XHTML Basic specification allows for many HTML constructs, a handful of consid-
erations should be taken into account when using XHTML Basic.

Tip
For some excellent guidelines on mobile development, check out the ‘‘Mobile Web Best Practices’’ docu-
ment by the W3C, found at www.w3.org/TR/mobile-bp/. �

353

Part II: HTML Tools and Variants

Screen size
It has often been mentioned that mobile devices have limited screen real estate. However, to fully
appreciate the lack of display space on some devices, you should navigate to your favorite web-
site and size your PC’s browser window to fewer than 200 pixels. Figure 22-1 shows a similarly
sized browser window trying to display the Yahoo! main page.

FIGURE 22-1

Most Web pages look entirely different when viewed through a tiny viewport.

Balancing content for bandwidth and cost
It is easy to get carried away with content when developing for the Web and to assume that most
of your audience has a fast computer connected to the Internet via a fast broadband connection.
However, that is not the case with most mobile devices. In fact, some users pay a premium to
have their device connected to the Internet.

When developing for mobile devices, keep a healthy balance between your content and what
users might end up paying for it. This means self-censoring your content and not adding any
fluff or out-of-context material. It also means keeping your content lean and mean, coding the
bare minimum content, and realizing that mobile content will not be glitzy and flashy at this
point in time.

Input restrictions
It is tempting to solicit various pieces of input from mobile users — location data for looking
up local services, names for registering in databases, and so forth. However, keep in mind that
most mobile devices lack a real keyboard, making a chore out of entering even the most trivial
of data. Therefore, it becomes important to limit the amount of data entry required, relying more
on alternative data entry schemes, such as select lists, option buttons, links, and so forth.

354

Chapter 22: Creating Mobile Documents

Easy URLs
Although it is advisable to put your mobile documents in a separate directory on your Web
server, you want to keep that directory (and full URL) as easy to ‘‘type’’ as possible. For example,
consider these guidelines:

� Keep your directory names short.

� Do not place content further than one level down from the root of the server.

� Avoid any special characters in the URL.

� Use abbreviations instead of long words in the URL (for example, dev instead of devel-
oper).

� Consider creating shorter URLs, decoded by the server.

Another alternative is to place your mobile content in a specific location and have the Web
server redirect user agents to that location based upon their capabilities. Most user agents adver-
tise their capabilities — whether they can accept HTML, XHTML MP, WML, and so on — when
they request a document. Web servers can read this information and act accordingly. For
example, the rewrite module for the Apache server can use the following code to detect a user
agent that accepts XHTML Mobile Profile and WML content and deliver an index.xhtml
document instead of the default index.html document:

Test for acceptance of xhtml+xml (MP) and WML
RewriteCond %{HTTP_ACCEPT} application/xhtml+xml
RewriteCond %{HTTP_ACCEPT} text/vnd\.wap\.wml
If user agent accepts both, it’s MP enabled-give
it the xhtml file instead
RewriteRule index.html$ index.xhtml [L]

Note
Full coverage of the Apache rewrite module and how to use it to redirect mobile user agents is out-
side the scope of this book. You can find more information on Apache’s mod_rewrite module at
http://httpd.apache.org/docs/2.2/misc/rewriteguide.html. An excellent primer on how
to use several server-based methods of redirection can be found at www.oreillynet.com/pub/a/
wireless/2004/02/20/mobile browsing.html. �

There are also several online scripting services to help you parse the agent trying to access your
documents:

� Handset Detection provides a service that your documents can call to determine exactly
which handset is accessing them. Visit http://handsetdetection.com/pages/home
for more information.

� Studio Hyperset is a handful of scripts that can be run on or with your documents
to determine the features of the accessing agent. Visit http://studiohyperset.
wordpress.com/2006/11/12/mobile-redirect-update/ for more information.

355

Part II: HTML Tools and Variants

Small images
For practicality’s sake, your images have to be small in terms of dimension, but you should
ensure that they are as small as possible in terms of file size too. Run every image through a
palette optimizer and consider using black-and-white images wherever possible.

Descriptive alt attributes and link text
When developing mobile content, it is also important to ensure that all images have short but
highly descriptive alt tags. This ensures that devices that have images disabled or are on a
slow network (slow to load images) can display something to alert the user of the actual con-
tent. In addition, provide descriptive text for all links to ensure that users know where each will
take them.

Reliable navigation schemes
When display and usability are limited, reliable navigation schemes become much more signif-
icant. Logical access keys and logically structured tab order are two easy methods to improve
usability. Placing frequently used navigation toward the top of the page where it can be easily
found is another way to improve navigation.

Limit complex display structures
Tables were grudgingly included in XHTML Basic 1.1 by the W3C. Their inclusion was to help
ensure that tabular data could be represented in mobile documents. However, tables should not
be used to format entire documents, as discussed in Chapter 34. Stick to textual data in your
tables to help keep mobile users happy.

Mobile Web Development Tools
Many development tools are available to aid your Web document efforts. Almost every phone
manufacturer has a tool or two available to help developers create content for delivery on their
devices. Table 22-2 lists a handful of the more prolific developer sites.

Each of these sites offers several resources, which are available only after you sign up for the
respective developer program.

Tip
Several of the toolsets available from the mobile vendors contain full IDEs and debugging tools that can
help you write compliant XHTML mobile code for a variety of devices. �

356

Chapter 22: Creating Mobile Documents

TABLE 22-2

Popular Sites for Mobile Content Development Tools

Company URL

Ericsson Mobility World
Developer Program

www.ericsson.com/mobilityworld

ForumNokia http://forum.nokia.com/

MOTODEV, the Motorola
Developer Network

http://developer.motorola.com/

Summary
This chapter covered mobile HTML, from how Web mobility started to how it evolved through
the components of XHTML Basic. You learned how easy it can be to create pages to be
displayed on a variety of mobile devices, but also how difficult it can be to create content for
resource-constrained devices. The next chapter covers how to clean and validate your code.
Then you will learn a few HTML tips and tricks.

357

Tidying and Validating
Your Documents

IN THIS CHAPTER
Tidying Your HTML Code

Validating Your Code

Additional Testing
and Validation

Most of your documents will endure multiple rounds of editing
before and after they are published. It is important to keep your
code as tidy as possible so that you can easily read and change

them in the future. Also, after creating your documents, it is important to
test them to ensure that visitors to your site will not encounter any unfore-
seen problems. This chapter covers the basics of testing your code, including
what tools are at your disposal.

Tidying Your HTML Code
One important step while developing HTML documents is to keep the code
tidy. Tidy code is code that is kept orderly with logical line breaks and
intelligent indentation. Although this may not seem like a crucial issue,
it takes only small snippets of code to see the difference, as illustrated in
Listings 23-1 and 23-2.

LISTING 23-1

Untidy code

<table border="1" rules="all">
<tr><td><img src="./images/JillHennessy.jpg" width="100px"
height="150px" alt="Jill" />
Jill Hennessy</td><td>Jill is
the founder of the Oasis of Tranquility and its executive
officer. She oversees the business side of the spa and operates
as its chief recruiting officer. Jill has degrees in business
and cosmetology.</td></tr><tr><td><img
src="./images/SandraBrown.jpg" width="100px" height="150px"
alt="Sandra" />
Sandra Brown</td><td>Sandra is the
co-founder of the Oasis and its operating officer. She is

continued

359

Part II: HTML Tools and Variants

LISTING 23-1 (continued)

responsible for the day-to-day operation of the spa and
management of its employees. Sandra has journalism and
management degrees and several accreditations from various
cosmetology schools.</td></tr><tr><td><img
src="./images/DamienSanders.jpg" width="100px" height="150px"
alt="Damien" />
Damien Sanders</td><td>Damien is the lead
stylist at the Oasis. He has worked at several of the most
esteemed salons in Hollywood and has several degrees and
accreditations in hair design from schools across the nation.
Damien was one of two stylists invited to travel with a popular
modern burlesque group on their last tour.</td></tr><tr><td><img
src="./images/MartyTowers.jpg" width="100px" height="150px"
alt="Marty" />
Marty Towers</td><td>Marty is the Oasis
makeover specialist. She has several degrees and accreditations
to her credit and is known as one of the top makeup and nail
color specialists in the country. She was recently invited on a
nationally syndicated talk show to discuss women’s image and
skin and nail techniques.</td></tr><tr><td><img
src="./images/TaliaOwens.jpg" width="100px" height="150px"
alt="Talia" />
Talia Owens</td><td>Talia is the lead
masseuse for the Oasis. She has over 2000 hours of instruction
in various massage techniques--from deep tissue to
neuromuscular--and holds certifications in each. Talia is also
an accredited acupuncturist and aromatherapy
specialist.</td></tr><tr><td><img src="./images/ThomasBaker.jpg"
width="100px" height="150px" alt="Thomas" />
Thomas
Baker</td><td>Thomas rounds out the massage team here at the
Oasis. He has over 1500 hours of instruction in several massage techniques
and is accredited in several. Thomas also holds a degree
in sports therapy and rehabilitation.</td></tr>

</table>

LISTING 23-2

Tidy code

<table border="1" rules="all">
<tr>
<td><img src="./images/JillHennessy.jpg" width="100px"

height="150px" alt="Jill" />

Jill Hennessy</td>
<td>Jill is the founder of the Oasis of Tranquility and its

executive officer. She oversees the business side of the spa and
operates as its chief recruiting officer. Jill has degrees in
business and cosmetology.</td>
</tr>

360

Chapter 23: Tidying and Validating Your Documents

<tr>
<td><img src="./images/SandraBrown.jpg" width="100px"

height="150px" alt="Sandra" />

Sandra Brown</td>
<td>Sandra is the co-founder of the Oasis and its operating

officer. She is responsible for the day-to-day operation of the
spa and management of its employees. Sandra has journalism and
management degrees and several accreditations from various
cosmetology schools.</td>
</tr>
<tr>
<td><img src="./images/DamienSanders.jpg" width="100px"

height="150px" alt="Damien" />

Damien Sanders</td>
<td>Damien is the lead stylist at the Oasis. He has worked at

several of the most esteemed salons in Hollywood and has several
degrees and accreditations in hair design from schools across
the nation. Damien was one of two stylists invited to travel
with a popular modern burlesque group on their last tour.</td>
</tr>
<tr>
<td><img src="./images/MartyTowers.jpg" width="100px"

height="150px" alt="Marty" />

Marty Towers</td>
<td>Marty is the Oasis makeover specialist. She has several

degrees and accreditations to her credit and is known as one of
the top makeup and nail color specialists in the country. She
was recently invited on a nationally syndicated talk show to
discuss women’s image and skin and nail techniques.</td>
</tr>
<tr>
<td><img src="./images/TaliaOwens.jpg" width="100px"

height="150px" alt="Talia" />

Talia Owens</td>
<td>Talia is the lead masseuse for the Oasis. She has over

2000 hours of instruction in various massage techniques--from
deep tissue to neuromuscular--and holds certifications in each.
Talia is also an accredited acupuncturist and aromatherapy
specialist.</td>
</tr>
<tr>
<td><img src="./images/ThomasBaker.jpg" width="100px"

height="150px" alt="Thomas" />

Thomas Baker</td>
<td>Thomas rounds out the massage team here at the Oasis. He

has over 1500 hours of instruction in several massage techniques
and is accredited in several. Thomas also holds a degree in
sports therapy and rehabilitation.</td>
</tr>
</table>

361

Part II: HTML Tools and Variants

As you can see, with the table elements isolated by line breaks and indentations, the table is
easier to read and troubleshoot. Although tables are some of the more complex and problem-
atic elements, many HTML elements can become exponentially harder to read and troubleshoot
without liberal formatting.

The act of tidying your code is simply adding the additional spacing, indentation, and other for-
matting to your HTML code in order to make it readable. Ideally, you would add this formatting
as you write your code, but should you need to do so after the fact, there are a few ways, and
one powerful tool, to help add the formatting later.

Note
When writing tidy code it is important to be careful of where you insert blank lines and spaces. Although
important for readability, both of these entities can change the format of your final document, usually for
the worse. As a general rule, always insert white space between closing and opening tags. For example,
when adding space to table cells, place your white space between the ending tag of one cell (</td>) and
the beginning tag of the next cell (<td>). Any white space in this area will simply be ignored by a user
agent, and as such will not change the formatting of your document.

Consistency is also important while formatting your documents so you know exactly where to expect ele-
ments and when. �

HTML Tidy
The HTML Tidy tool was created several years ago by Dave Raggett and maintained for sev-
eral years by Dave and various entities at the W3C. HTML Tidy was originally created for two
reasons:

� To clean up HTML code, adding liberal white space and indentation to help increase the
readability of the code (also making it easier to troubleshoot)

� To check the HTML for basic errors — missing tags, inappropriate attributes, and so on

Today, the program has been taken over by a group of ‘‘enthusiastic volunteers’’ at Source Forge,
where it is now actively maintained.

Note
The HTML Tidy home page is now at http://tidy.sourceforge.net. �

Getting HTML Tidy
HTML Tidy exists mostly as an executable available for Linux/UNIX platforms and is down-
loadable from the HTML Tidy home page. Additional HTML Tidy projects have included the
following:

� Java version of Tidy

� Perl XS version of Tidy

� Python wrapper for TidyLib

� HTMLTrim, a highly customizable X(HTML)/XML pretty-printer and fixer for Windows

362

Chapter 23: Tidying and Validating Your Documents

� Jase, a simple editor with TidyLib integration

� mod_tidy for Apache 2

There are also ad hoc versions compiled for Windows, OS/2, and MAC OS (classic and OS X).

Running HTML Tidy
Running HTML Tidy is straightforward; you simply run the executable with an HTML file as an
argument. For example, the following command line could be used to run our earlier non-tidy
table example (refer to Listing 23-1) through Tidy:

tidy tableexample.html

Tidy, in return, provides a tidied example of the file, along with a few hints for our document,
as shown in Listing 23-3.

LISTING 23-3

Tidy output

line 8 column 1 - Warning: <table> lacks "summary" attribute
Info: Doctype given is "-//W3C//DTD HTML 4.01//EN"
Info: Document content looks like HTML 4.01 Strict
1 warning, 0 errors were found!
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Linux/x86 (vers 12 April 2005), see www.w3.org">
<title>Using Tidy</title>
</head>
<body>
<table border="1" rules="all">
<tr>
<td><img src="./images/JillHennessy.jpg" width="100" height="150"
alt="Jill" />

Jill Hennessy</td>
<td>Jill is the founder of the Oasis of Tranquility and its
executive officer. She oversees the business side of the spa and
operates as its chief recruiting officer. Jill has degrees in
business and cosmetology.</td>
</tr>
<tr>
<td><img src="./images/SandraBrown.jpg" width="100" height="150"
alt="Sandra" />

Sandra Brown</td>
<td>Sandra is the co-founder of the Oasis and its operating
officer. She is responsible for the day-to-day operation of the spa

continued

363

Part II: HTML Tools and Variants

LISTING 23-3 (continued)

and management of its employees. Sandra has journalism and
management degrees and several accreditations from various
cosmetology schools.</td>
</tr>
<tr>
<td><img src="./images/DamienSanders.jpg" width="100" height="150"
alt="Damien" />

Damien Sanders</td>
<td>Damien is the lead stylist at the Oasis. He has worked at
several of the most esteemed salons in Hollywood and has several
degrees and accreditations in hair design from schools across the
nation. Damien was one of two stylists invited to travel with a
popular modern burlesque group on their last tour.</td>
</tr>
<tr>
<td><img src="./images/MartyTowers.jpg" width="100" height="150"
alt="Marty" />

Marty Towers</td>
<td>Marty is the Oasis makeover specialist. She has several
degrees and accreditations to her credit and is known as one of the
top makeup and nail color specialists in the country. She was
recently invited on a nationally syndicated talk show to discuss
women’s image and skin and nail techniques.</td>
</tr>
<tr>
<td><img src="./images/TaliaOwens.jpg" width="100" height="150"
alt="Talia" />

Talia Owens</td>
<td>Talia is the lead masseuse for the Oasis. She has over 2000
hours of instruction in various massage techniques--from deep
tissue to neuromuscular--and holds certifications in each. Talia
is also an accredited acupuncturist and aromatherapy
specialist.</td>
</tr>
<tr>
<td><img src="./images/ThomasBaker.jpg" width="100" height="150"
alt="Thomas" />

Thomas Baker</td>
<td>Thomas rounds out the massage team here at the Oasis. He has
over 1500 hours of instruction in several massage techniques and is
accredited in several. Thomas also holds a degree in sports therapy
and rehabilitation.</td>
</tr>
</table>
</body>
</html>

364

Chapter 23: Tidying and Validating Your Documents

Note the various lines at the beginning of the output: The table summary attribute should be
used to describe the table structure. It is very helpful for people using nonvisual browsers. The
scope and headers attributes for table cells are useful for specifying which headers apply to each
table cell, enabling nonvisual browsers to provide a meaningful context for each cell.

For further advice on how to make your pages accessible, see www.w3.org/WAI/GL. You may
also want to try www.cast.org/bobby, which is a free Web-based service that checks URLs for
accessibility.

To learn more about HTML Tidy, see http://tidy.sourceforge.net. Please send bug
reports to html-tidy@w3.org. HTML and CSS specifications are available from www.w3.org.

Lobby your company to join W3C — see www.w3.org/Consortium.

As you can see from Listing 23-3 and the suggestion of the <table> tag’s summary attribute,
Tidy is a bit aggressive in its diagnostics of documents. Thankfully, with several dozen options at
your disposal, you can tailor Tiny’s behavior to your liking.

To get a list of Tidy’s options, either read the documentation or run Tidy with the help
parameter:

tiny -h

Note
As with validation tools (covered in the next section), it is important to include a valid DOCTYPE in all the
documents being run through Tidy. �

Validating Your Code
Validating your document code is a very good idea. It helps double-check your document for
simple errors — typos, unclosed tags, and so on — and verifies that your code meets expected
standards.

Specifying the correct document type declaration
There are many ways to validate your documents, but they all rely on your documents con-
taining a correct document type declaration that references a specific document type definition
(DTD). For example, if you want to base your documents on Strict HTML 4.01, you would
include the following document type declaration at the top of your document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

The DOCTYPE declaration informs any user agent reading the document on what standard the
document is based. The information is primarily used by validation clients in validating the code
within the document, but it might also be used by a display agent to determine what features it
must support.

365

Part II: HTML Tools and Variants

Tip
You can find a list of valid DTDs at www.w3.org/QA/2002/04/valid-dtd-list.html. �

Validation tools
You can use several tools to validate your documents. Tools at your disposal include the
following:

� The online W3C HTML validation tool, found at http://validator.w3.org/

� The online Web Design Group (WDG) validation tool, found at http://htmlhelp.com
/tools/validator/

� Validation utilities built into Web development tools such as Adobe’s Dreamweaver,
shown in Figure 23-1

� Any of the various separate applications that can be run locally. A comprehensive list is
maintained on the WDG site at www.htmlhelp.com/links/validators.htm

FIGURE 23-1

Adobe’s Dreamweaver includes a comprehensive code validation feature.

366

Chapter 23: Tidying and Validating Your Documents

Understanding validation output
Consider the following HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Validation Test</title>

</head>
<body>
<form action="" method="POST">

<input name="text" type="text" />

<input name="submit" type="submit" />

</form>
</body>
</html>

When this code is passed through the W3C Markup Validation Service, the following first error
is returned:

Line 9, column 30: document type does not allow element
"INPUT" here; missing one of "P", "H1", "H2", "H3", "H4",
"H5", "H6", "PRE", "DIV", "ADDRESS" start-tag
<input name="text" type="text">

Although the document looks to be conforming HTML, the validation service thinks otherwise.
But what exactly does the error mean?

In short, it means that the input element must be contained within a block element other than
the form tag. Typically, the paragraph tag (<p>) is used, but you can also use <div>, a heading,
<pre>, and so on.

Note
The W3C also has an online CSS validation tool, accessible at http://validator.w3.org/. Similar to
the HTML validation tool, this tool will ensure that your CSS is free from typos and that all the attributes
are paired with their matching styles. �

Adding a paragraph container solves the problem and makes the document valid:

...
<form action="" method="POST">

<p>
<input name="text" type="text" />

<input name="submit" type="submit" />
</p>

</form>
...

367

Part II: HTML Tools and Variants

Tip
When working on making a document validate, always handle the errors in order. The example in this
section actually results in four separate errors, each relating to the missing block elements. Adding the
preceding elements solves all four problems. �

Additional Testing and Validation
Besides using prefab Tidy and validation services, you can run other quick tests on your code to
ensure that it runs well in the real world.

Testing with a variety of user agents
Despite being built on standards, no two user agents support HTML and CSS to the same degree.
Some user agents don’t implement certain features, while others implement them differently.

Note
Contrary to popular belief, Microsoft’s Internet Explorer is no worse than other user agents regarding sup-
porting standards. Even though Microsoft has created many proprietary technologies for its user agent, it
does only a fair job of supporting the actual standards. �

When coding your documents, it is important to understand your expected audience and what
user agents they may be using. Although Microsoft Internet Explorer has market share on its
side, many people use other user agents, such as Firefox, Opera, Konqueror, Safari, and so forth.
As such, it is doubtful that everyone will be able to view your documents the way you originally
intended, especially if you use some of the more esoteric features and technologies.

Make sure you test your pages on all target platforms to ensure that no show-stopping errors
exist on any of the platforms. At a bare minimum, you should test on a current Microsoft (Inter-
net Explorer) browser and a Firefox/Mozilla browser because most user agents incorporate one
of these two technology bases.

Also, don’t forget the non-computer user agents used by cell phones, PDAs, and other mobile
devices. If your site will appeal to mobile device users, at least obtain the Software Development
Kit (SDK) or emulator for each likely platform and preview your documents accordingly.

Testing for a variety of displays
Many Web designers make the mistake of designing their documents for specific screen resolu-
tions. When the document is displayed at a smaller resolution, the page elements tend to jam
together or break across unexpected lines.

Your documents should be suitable for many resolutions. Although most users will be running
at resolutions of at least 800 × 600 pixels, you may have the occasional user running lower
resolutions.

368

Chapter 23: Tidying and Validating Your Documents

Always test your documents at various resolutions and color depths to look for any
shortcomings.

Summary
This chapter taught you the importance of keeping your code tidy and consistent, and how to
validate it using tools and a lot of testing. The next chapter wraps up the HTML coverage by
providing a handful of tips and tricks you can employ in your documents. The next part of this
book covers CSS in topical chapters.

369

HTML Tips
and Tricks

IN THIS CHAPTER
Preloading Images

Stretching Title Bars

Controlling Text Breaks in
Table Cells

Simulating Newspaper
Columns

Including Image Size for Fast
Display

Protecting E-mail Addresses

Automating Forms

Modifying the User Agent
Environment

Throughout this book, you have read about the ins and outs of the
various HTML tags and entities. This chapter covers a few tips and
tricks you can use to supplement your HTML knowledge to achieve

real-world results.

Preloading Images
One of the things that can really slow down the display of Web pages is an
abundance of images, each of which can contain the equivalent of 17,000 to
20,000 characters.

A trick that was developed to help overcome the delays experienced
while image-rich documents load is image preloading. Through the use of
JavaScript, image files are loaded into image objects. The net result is that
the graphics are not displayed but are loaded into the browser’s cache for
later use. When it is time for the browser to actually display the image(s),
they are taken from the local cache instead of having to make the trip across
the Internet.

The script embedded in the following document is an example of an image
preload script:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Preloading Images</title>
<script type="text/JavaScript">
// Assign path of images to be preloaded to
// array, one image per index

371

Part II: HTML Tools and Variants

var imagenames = [];
imagenames[0] = "images/header.gif";
imagenames[1] = "images/logo.jpg";
imagenames[2] = "images/picture1.gif";
imagenames[3] = "images/picture2.gif";
imagenames[4] = "images/picture3.gif";
imagenames[5] = "images/rule.gif";
imagenames[6] = "images/button01.gif";
imagenames[7] = "images/button02.gif";
imagenames[8] = "images/button03.gif";
imagenames[9] = "images/footer.gif";
imagenames[10] = "images/gradient.gif";
imagenames[11] = "images/sphere.gif";
// Create new image object for each image
// and then assign a path to the src, preloading
// the actual image
function preload(imagenames) {

var images = [];
for (var i=0; i < imagenames.length; i++) {

images[i] = new Image();
images[i].src = imagenames[i];

}
}
// Run script, preloading images, before document loads
// (alternately, place call in an onLoad in body tag to
// preload images after document loads
preload(imagenames);
</script>

</head>
<body>
<p>Document body goes here.</p>

</body>
</html>

The script builds an array of image paths and then iterates through them, creating an image
object and assigning an src property to cause the image to actually be preloaded. The script
can be run via two different means: by a function call in the head section, which causes the
script to run before the document loads, or by an onLoad handler in the <body> tag, which
causes the script to run after the document loads.

Note
Image preloaders aren’t useful for individual documents; they are most useful for sites of multiple docu-
ments that reuse the same images repeatedly (buttons, rules, backgrounds, and so on). When seeding the
loader, don’t forget to include images from all documents your audience may see. �

The former, before the document loads, is handy when the document itself contains many
images — running the preloader first can speed the display of the initial document. The latter,
after the document loads, is a better choice when subsequent documents contain the majority of
images. This enables the initial document to load more quickly because it doesn’t have to wait

372

Chapter 24: HTML Tips and Tricks

for the script to run — the document is displayed for the user to peruse while the script runs in
the background.

Controlling Text Breaks in Table Cells
Text in table cells is a fickle beast, especially when filled with long numbers. True text will
typically allow for sane breaks, even in a narrow column. However, not much can be done with
numeric data or other data that cannot be arbitrarily broken when a column changes size.

For example, consider the following number:

1,234,567,890.34

How would you break such a number in a column that supports only a four-character width? It’s
a tough decision, but probably one you would prefer to make yourself, rather than leave it up to
HTML and CSS.

Tip
When deciding where to break numbers, keep in mind that the best places to break are around punctuation
(e.g., commas or periods) or currency symbols. Doing so will preserve the readability of your numbers as
much as possible. �

You have two essential tools to use when controlling line breaks: the nonbreaking space and the
zero-width space.

The nonbreaking space is best known by its HTML entity code . This resulting charac-
ter looks and acts like a space but it doesn’t allow the browser to break the line at this space.
Although it is commonly used to space-fill elements, the nonbreaking space does have its tex-
tual uses. For example, you typically would not want the following line broken at the embedded
spaces:

12344 Mediterranean Circle

To prevent the line from breaking, you would replace the spaces with nonbreaking space entities,
similar to the following:

12344 Mediterranean Circle

Unlike the nonbreaking space, the zero-width space is not visible but allows the browser to
break at the character. The zero-width space can be inserted by using its HTML entity code,
​.

Returning to our earlier example number, you can choose where you would like it to be divided
if it must break (the original number is on the first line, the doctored number on the second):

1,234,567,890.34
1,​234,​567,​890.​34

Now, if the number needs to be broken, it will be broken after a comma or after the
decimal point.

373

Part II: HTML Tools and Variants

Stretching Title Bars
In Chapter 41 you will see how to use CSS to create elaborate expandable buttons. However,
you can achieve similar results in HTML. This section demonstrates how to create an expandable
header bar like that shown in Figure 24-1.

FIGURE 24-1

Using background graphic layering in a table, you can create expandable title bars.

This technique is very simple but employs a method that isn’t thought of very often — the use
of background images.

The goal is to create a bar that can be stretched to accommodate any page width, design imple-
mentation, or text length. At first blush, you might be tempted to simply place the bar as a
graphic, increasing its width via a custom value for the image’s width property. However, doing
so will alter the image’s aspect ratio and distort it accordingly.

The better choice is to use a sectioned image consisting of the bar’s end caps and a slice of its
midsection. Figure 24-2 shows a basic title bar created and sliced in a basic graphic editing
program. The bar is sliced into four pieces: the two end caps, a slice of midsection, and the
remainder of the midsection.

374

Chapter 24: HTML Tips and Tricks

FIGURE 24-2

A title bar can be easily created and sliced into desired pieces with most graphic editing programs.

Note
The large section of the midsection is an unnecessary piece; you only need the small center slice. �

Once you have the three pieces, you place them in a three-celled table, putting the end caps
in the first and last cells and using the slice as the background for the middle cell. Use of the
background-repeat property causes the slice to repeat through the width of the cell without
any distortion. The text for the bar becomes the content of the middle cell. The following docu-
ment shows how the bar is constructed:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<body>
<table width="50%" border="0" align="center"

cellpadding="0" cellspacing="0">
<tr>

375

Part II: HTML Tools and Variants

<td width="2%"><img src="BarLeft.jpg" width="43"
height="50"></td>

<td width="96%" style="background-image:
url(’BarSliver.jpg’);
background-repeat: repeat-x;">

Title Text for Bar</td>
<td width="2%"><img src="BarRight.jpg" width="53"

height="50"></td>
</tr>

</table>
</body>
</html>

Figure 24-3 shows how the method achieves the desired effect.

FIGURE 24-3

The top image shows how the bottom image is achieved.

The bar can easily be extended by increasing the width of the middle cell — the slice will
be tiled to fill the extra space. If the table is set to dynamically expand, then the bar will also
expand dynamically with its table.

376

Chapter 24: HTML Tips and Tricks

Simulating Newspaper Columns
Although CSS advocates are known to proclaim that table formatting is dead, you can still
achieve many impressive layouts with tables. One in particular, newspaper columns, is
often used.

Newspaper columns are narrow, parallel, vertical columns of text. This layout incorporates an
optional heading that straddles the top of the columns just like a newspaper headline.

The key is to use the colspan attribute with the first table cell, causing it to span multiple
columns. The text columns follow on the next row, occupying one table column each. For
example, the following code sets up a table for two newspaper columns with a heading above
them, as shown in Figure 24-4:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Newspaper Columns</title>
<style type="text/css">

#newspaper { height: 100px;
width: 700px; }

#headline { font-size: xx-large;
text-align: center; }

#column { height: 400px; }
</style>

</head>
<body>
<table id="newspaper" border="1" cellpadding="10px">
<tr>

<td id="headline" colspan="2">Headline</td>
</tr>
<tr>

<td id="column" valign="top" width="50%"><p>Lorem ipsum
dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est
laborum.</p><p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p</td>

<td id="column" valign="top" width="50%"><p>Lorem ipsum

377

Part II: HTML Tools and Variants

dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id est
laborum.</p><p>Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p></td>
</tr>

</table>
</body>
</html>

FIGURE 24-4

A two-column newspaper layout

378

Chapter 24: HTML Tips and Tricks

For a production layout you will probably want to set the table’s border attribute to 0.

The keys to a good design are to either fix the table width or set it to 100 percent, and ensure
that the columns occupy only their share of the table width (text oddities can cause column
widths to shift) by explicitly setting their width, as well. Setting the column height isn’t always
necessary, but sometimes you will want to fix column lengths with a height property or set a
minimum length with a min-height property.

Tip
You can use the <td> tag’s colspan and rowspan attributes to make some very creative table designs. �

Including Image Size for Fast Display
The importance of always specifying an image’s dimensions was brought up in Chapter 12, but
it bears repeating here. When a browser loads an image to display, it needs one of two things in
order to ascertain the size of the image:

� The completion of the image load

� The availability of width and height properties in the tag

Either option will result in a page displaying the image with its correct size. However, the first
option causes a delay before the image displays correctly, which can lead to a few unwelcome
side effects for the end user. One possible side effect is that the user agent will stop loading all
content until the image is loaded, sized, and can be displayed properly. Another possible side
effect is that the user agent will reserve a portion of the document for the image, and reformat
the document to fit the final size after the image’s size is known.

If the size is known, the user agent will reserve the proper amount of space for the image and
continue to load the rest of the document. When the image is fully loaded it is dropped into the
reserved area with no ill effects for the end user.

Protecting E-mail Addresses
Placing an e-mail address on a Web page is a dangerous prospect nowadays. If the document on
which the address appears generates even a medium amount of traffic, it is a given that a robot
or other harvester will pick up the e-mail address and add it to dozens of spam lists.

These bots and harvesters collect the e-mail address by simply accessing the document and
examining the document’s source. For example, to insert a link to e-mail Jill at The Oasis of
Tranquility, the following code can be inserted into a document:

Email Jill

Although this is displayed as simply ‘‘Email Jill’’ on a user agent’s screen, the harvester is able
to look at the code to find mailto:jill@oasisoftranquility.com. The mailto protocol
confirms that an e-mail address is within the anchor tag.

379

Part II: HTML Tools and Variants

The key to protecting your e-mail address is to avoid adding it to documents in an unencoded
format. Instead, obfuscate it using one of several methods, including the following:

� Break it into pieces that are reassembled by a script, which can’t be easily discerned by the
harvesters.

� Encode it using a method that can preserve its functionality.

Tip
One low-security method for obscuring an e-mail address is to replace the at sign (@) with its entity
equivalent, @. This method relies on the assumption that most harvesters search documents for the
literal ‘‘@’’ in their quest for e-mail addresses. By removing the literal at sign, you impede the harvester’s
ability to recognize e-mail addresses. Using the equivalent entity ensures that compliant browsers will still
render the at sign properly. Unfortunately, most harvesters are now aware of this trick and recognize the
entity as well as the literal at sign. �

The first method is fairly straightforward and uses a script similar to the following:

<script type="text/JavaScript">
document.write(’<a href="’);
t1 = "mai";
t2 = "lto";
t3 = ":";
t4 = "jill";
t5 = "@";
t6 = "oasi";
t7 = "softra";
t8 = "nquil";
t9 = "ity";
t10 = ".";
t11 = "com";
text = t1+t2+t3+t4+t5+t6+t7+t8+t9+t10+t11;
document.write(text);
document.write(’">Mail Jill’);

</script>

The preceding script breaks the e-mail portion into small chunks, assigns each chunk to a vari-
able, concatenates the chunks into one variable, and then outputs the entire anchor tag. The key
to this method is that the pieces of the e-mail address never appear together in the file. For addi-
tional security, you could scramble the order of the chunks — for example, placing number 6
before number 3, and so on.

The other method, encoding the address, is a little more complicated. It requires that you first
run a program to encode the address and then use those results in your document. The encod-
ing can be done in a variety of ways, one of which is shown in the following listing, an HTML
document with form entry and JavaScript for the encoding:

380

Chapter 24: HTML Tips and Tricks

<html>
<head>
<title>Email Encoder</title>
<script type="text/JavaScript">

function encode (email) {
var encoded = "";
for (i = 0; i < email.length; i++) {
encoded += "&#" + email.charCodeAt(i) + ";";

};
return (encoded);

};
</script>

</head>
<body>
<form action="" name="encoder"
onsubmit="encoded.value = encode(email.value);
return false;">

<table border="0" cellpadding="3px">
<tr>

<td>Enter your
email address:</td>
<td><input type="text" name="email" size="30" /></td>
<td><input type="submit" value="Encode" /></td>

</tr>
<tr>

<td>Encoded email:</td>
<td colspan="2"><input type="text" name="encoded"

size="60" /></td>
</tr>

</table>
</form>
</body>
</html>

This document displays a form in which you can enter your e-mail address. When you click the
Encode button, the e-mail address you entered is converted, character by character, into entity
equivalents and placed in the Encoded email field where you can copy it to the clipboard for
use in your documents. Note that you can encode the e-mail address only or, optionally, the
mailto: protocol string or even the entire anchor tag. Just be sure to replace the same amount
of text in your document as you encoded.

Note
Although the encoded method might seem to be the most secure method of protecting e-mail, it has a fatal
flaw. Any bot that can decode entities — which, at their root, are ASCII codes — can read the encoded
address very easily. �

381

Part II: HTML Tools and Variants

Automating Forms
A traditional use of JavaScript is the automation of forms. Using JavaScript, you can easily
manipulate the status of form controls, validate form content, and more.

Manipulating form objects
One popular use of JavaScript and forms is to provide a special check box to check or
uncheck the rest of the check boxes in the group. A bare-bones document with such a purpose
resembles the following code, whose output is shown in Figure 24-5:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
<head>
<script type="text/JavaScript">

function checkall() {

// Get the state of the first checkbox (0)
var chk = document.form1.checks[0].checked;

// Set the rest of the checkbox group to that value
for (i = 1; i < document.form1.checks.length; i++) {

document.form1.checks[i].checked = chk;
}

}

</script>
</head>
<body>

<form name="form1">
<p><input id="allboxes" type="checkbox" name="checks"

onClick="checkall();">(Un)Check All</p>
<p><input type="checkbox" name="checks">First check box</p>
<p><input type="checkbox" name="checks">Second check box</p>
<p><input type="checkbox" name="checks">Third check box</p>
<p><input type="checkbox" name="checks">Fourth check box</p>
<p><input type="checkbox" name="checks">Fifth check box</p>
<p><input type="checkbox" name="checks">Sixth check box</p>
</form>

</body>
</html>

382

Chapter 24: HTML Tips and Tricks

FIGURE 24-5

JavaScript can help automate forms, making them easier to access, like the (Un)Check All check
box shown here.

The automation works thanks to a few, basic HTML and JavaScript constructs:

1. The group of check boxes, including the special check box, have the same name attribute,
creating a collection of check boxes that can be accessed by a single JavaScript object.

2. The first check box, appropriately labeled ‘‘(Un)Check All,’’ includes an onClick event
handler that calls the JavaScript function checkall()when it is clicked (and changes
states).

3. The checkall()JavaScript function reads the state of the special check box and iterates
through the remaining check boxes setting their state to match the special check box’s
state. This causes the rest of the check boxes to be checked when the special check box is
checked, and unchecked when the special check box is unchecked.

In this case the JavaScript function is hard-coded to work on the checks collection of check
boxes, accessed via the JavaScript object document.form1.checks.

Such routines can be quite complex, identifying and modifying elements in the whole document,
and even across forms. For example, the following JavaScript function will cause every check box

383

Part II: HTML Tools and Variants

with similar value attributes to be checked when one of its kin, anywhere in the document, is
checked:

// Called from a checkbox’s "onClick" event,
// check all boxes with the same value attribute
function checkboxes(field) {

// Get settings of the checkbox that called us
checked = field.checked;
value = field.value;

// Retrieve all <input> elements into the MyElements array
myBody = document.getElementsByTagName("body")[0];
myElements = myBody.getElementsByTagName("input");

// Iterate through the retrieved <input> elements,
// looking for checkboxes
for(var x = 0; x < myElements.length; x++) {

if (myElements[x].getAttribute(’type’) == "checkbox") {

// If this checkbox (myElements[x]) has the same value
// as the checkbox that called us, set this box to
// the caller’s value
if (myElements[x].value == value) {

myElements[x].checked = checked;
}

} // if myElements

} // for x

} // End function

All that’s left is to ensure that related check boxes have the same value and to place the following
code in each check box tag so that when it is clicked it executes the function:

onClick = "checkboxes(this);"

Note
The preceding example relies upon the value attribute in check boxes. However, by modifying the code
you can easily match other attributes to trigger the mass checking. �

Validating form input
Another popular use of JavaScript is to validate form contents before submission to the
server-side handler. Using Dynamic HTML, JavaScript can easily pick up form field values,
evaluate them, and make decisions based on the values.

For example, the following code checks whether the field x, in the form named form1, is empty:

if (document.form1.x.value == "")

384

Chapter 24: HTML Tips and Tricks

Similar JavaScript code can determine the length of content in a field, compare two dates
in two fields, test for a valid e-mail address, and more. How does this code execute? Each
decision-based piece of code could be tied to an onChange event in each field on the form, but
that forces you to build several functions, one for each field. It’s simpler to tie the decision-based
code together in one function and call it when the form is submitted. At that point the code can
check the whole form to determine whether it should be submitted or rejected.

To tie a function to a form’s submission action, you use the onSubmit event handler in the
<form> tag, similar to the following:

<form action="handler.cgi" method="POST" onSubmit="return validation()">

The onSubmit handler causes the JavaScript function validation() to execute when the
form’s submit button is pressed (or any other action results in the form being submitted). The
return value of the function determines whether the form is actually submitted — a return value
of true allows the form to be submitted, whereas a return value of false prevents the form
from being submitted.

The JavaScript function is constructed like the following pseudocode:

function validate() {

test condition1
if test fails:
display message
return false

test condition1
if test fails:
display message
return false

test condition1
if test fails:
display message
return false

test condition1
if test fails:
display message
return false

...

return true

Note that in each case that the function returns false, the function’s execution stops and the
form is not submitted. However, the function also displays a message to users indicating the
error encountered, giving them the chance to correct the error. This method of validating forms
is serial — that is, each field is validated in order, and a single failure stops the validation. In
such a case the user must deal with each error before validation can progress to the next test.

385

Part II: HTML Tools and Variants

The following code shows a validation function that checks a handful of fields in a form. The
comments in the code are self-explanatory as to what is checked and how:

function validate() {

// Check to see if the "y" field’s value exceeds 80
if (parseFloat(document.form1.y.value) >= 80) {

alert("The value of Y cannot exceed 80.
Please enter an appropriate value.");

document.form1.field.focus();
return false;

}

// Check to see if the "x" field is blank
if (document.form1.x.value == "") {

alert("X is a required field.");
document.form1.field.focus();
return false;

}

// Check to see if the "ending_date field" is greater
// than the "starting_date field" (end after beginning)
// Only check if we have both values
if(document.form1.ending_date.value!="" &&

document.form1.starting_date.value!="")
{

// Split the dates by their dashes
var from_date = document.form1.starting_date.value.split("-");
var to_date = document.form1.ending_date.value.split("-");

// Re-assemble dates in sortable method
str_from_date = from_date[2]+from_date[0]+from_date[1];
str_to_date = to_date[2]+to_date[0]+to_date[1];

// Check date order
if(str_from_date > str_to_date){
alert("Ending Date should be greater then starting Date.");
document.form1.ending_date.focus();
return false;

}
}

// Test for a valid email address in email field
// Use a regular expression to match against the field’s contents
var regx = new

RegExp(/ ˆ \w+([\.-]?\w+)*@\w+([\.-]?\w+)*(\.\w{2,3})+$/);

386

Chapter 24: HTML Tips and Tricks

if (!regx.test(document.form1.email.value)) {
alert("The email address is invalid.

Please enter a valid address.");
return false;

}

return true;

} // End validate function

Note
The preceding example uses simple field and form names. In an actual environment you would use more
descriptive names that match your usage. In addition, the preceding examples use some fairly complex
methods such as regular expression matching. If you intend to do a lot of form work with JavaScript, you
are encouraged to pick up a comprehensive JavaScript book, like Wiley’s JavaScript Bible, 7th Edition. �

Modifying the User Agent Environment
Not only can JavaScript modify CSS settings and HTML, it can also modify the user agent. For
example, you can move and resize the user agent’s window, manipulate its scroll bars, and more.
To demonstrate this, we will create JavaScript to scroll the current document vertically, in both
directions (up and down).

The concept
The concept for this exercise is simple — provide a control that when moused over will
scroll the current document. When the end of the document is reached, the scrolling will scroll
upward to the top of the document where it will again scroll downward. When the mouse is
moved off of the control, the scrolling will stop.

Note
Although this example has limited usage — thanks to the scroll wheel on most mice — it is a good example
of using a controlling element to orchestrate several events. �

For this example we will use a <div> with a fixed position as the control.

The implementation
The code for this exercise appears in the next two listings. Listing 24-1 contains the JavaScript
for the document (in an external file); Listing 24-2 contains the HTML document itself, which is
shown in Figure 24-6.

387

Part II: HTML Tools and Variants

LISTING 24-1

JavaScript to control the scroll bar

///
// Retrieve and return the current offsets
// for both scrollbars (x = horizontal,
// y = vertical)
///
function getScrollXY() {
// Set offsets to zero
var scrOfX = 0, scrOfY = 0;

// Determine browser mode and set
// offsets to current scroll position
if (typeof(window.pageYOffset) == ‘number’) {

//Netscape compliant
scrOfY = window.pageYOffset;
scrOfX = window.pageXOffset;

} else if(document.body &&
(document.body.scrollLeft ||
document.body.scrollTop)) {

//DOM compliant
scrOfY = document.body.scrollTop;
scrOfX = document.body.scrollLeft;

} else if(document.documentElement &&
(document.documentElement.scrollLeft ||
document.documentElement.scrollTop)) {

//IE6 standards compliant mode
scrOfY = document.documentElement.scrollTop;
scrOfX = document.documentElement.scrollLeft;

}

// Return array with offsets
return [scrOfX, scrOfY];

} // Function getScrollXY

///
// Change the direction (dir) of the scroll and
// the background image of the scroller (to match
// direction)
///
function chdirscroll () {
dir = dir * -1;
obj = document.getElementById("scroller");
if (dir == 1) {

obj.style.backgroundImage = "url(images/dn_arrow.gif)";
} else {

388

Chapter 24: HTML Tips and Tricks

obj.style.backgroundImage = "url(images/up_arrow.gif)";
}

}

///
// Scroll the document in the y direction (vertical) by the
// currently set amount (increment * direction)
///
function doscroll() {

// Initialize values
var y = -1;
var yy = 0;

// Get current scroll position
xy = getScrollXY();
y = xy[1];

// Scroll the document
scrollBy(0,inc*dir);

// Check new position, if it is the same as the old
// position, the scrollbar did not move -- it is
// at the top or bottom of the document
xy = getScrollXY();
yy = xy[1];
// If scrollbar is at the top or bottom, reverse the
// direction and bounce, if bounce option set. If,
// bounce is not set, stop the scrollbar’s movement
if (y == yy) {
if (bounce == 1) {
chdirscroll();

} else {
clearInterval(scrollIt);

}
}

} // End function doscroll()

///
// Begin scrolling according to previously set speedmod
///
function setscroll () {

inc = speedmod * 20; // Set the increment to move, in
// multiples of 20 (by speedmod)

// Start scrollbar movement (by inc) every 25 milliseconds
scrollIt = setInterval("doscroll(inc);",25);

}
///

continued

389

Part II: HTML Tools and Variants

LISTING 24-1 (continued)

// Stop the scrolling
///
function stopscroll () {
clearInterval(scrollIt);

}

///
// Initialize the scroll values and settings
///
function initscroll () {
// Init the scroll variables
dir = 1; // The direction to move (positive = down)
bounce = 1; // Whether to bounce (bounce = 1) or not (bounce = 0)
speedmod = 1; // The speed modifier (higher = faster)
// Assign the down arrow to the scroller
obj = document.getElementById("scroller");
obj.style.backgroundImage = "url(images/dn_arrow.gif)";

}

LISTING 24-2

The document with a scrollbar control

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

<script type="text/JavaScript" src="scroll.js"></script>

<style type="text/css">

#scroller {
width: 20px;
height: 20px;
background-color: none;
background-repeat: no-repeat;
background-position: center center;
border: 1px solid black;
position: fixed;
top: 0px;
left: 0px;
}

#content {
margin-left: 30px;

}

390

Chapter 24: HTML Tips and Tricks

</style>

</head>

<body onLoad="initscroll();">

<div id="scroller" onMouseOver="setscroll();" onMouseOut="stopscroll();"
onClick="chdirscroll();"> </div>

<div id="content">
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>

...

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.</p>

</div> <!-- /Content -->

</body>
</html>

The desired implementation is straightforward:

� An onLoad event trigger is attached to the <body> tag so that the scrolling options are set
(globally) in preparation for scrolling when the document is first loaded.

� A fixed <div>, positioned at the upper-left corner of the user agent window, is used to
control the scrolling.

� Two event triggers, onMouseOver and onMouseOut, are attached to the controlling
<div> and are used to start and stop the scrolling. When the mouse is placed over the
<div>, the scrolling starts. When the mouse is moved off of the <div>, the scrolling stops.

� A third event trigger, onClick, is used to change the direction of the scroll. When the
controlling <div> is clicked, the scrolling changes direction.

� By default, the scrolling ‘‘bounces’’ — that is, when it reaches the bottom of the document
it begins traveling upward to the top of the document where it bounces back down.

391

Part II: HTML Tools and Variants

FIGURE 24-6

The scroll control division appears and stays in the upper-left corner of the window.

Scroll control

The document layout is accomplished with two divisions. The ‘‘scroller’’ <div> is a small square
with an arrow pointing in the direction the document will scroll. It is used for turning on and
off the scroll. The <div> position is set to fixed so it will stay where it was placed when the
document scrolls.

A second <div> is used to contain the actual content of the document. Note how the
‘‘content’’ <div> has a larger left margin specified so as to not conflict with the scroll <div>.
For this example, the document simply contains several paragraphs of the Lorem Ipsum
placeholder text to provide a simple document long enough to scroll.

The JavaScript functions
The scrolling control is accomplished by six JavaScript functions:

� initscroll(): Called by the <body> tag’s onLoad event, this function sets the ini-
tial values, preparing for the scrolling action — the initial direction (dir) of the scroll
(1 = down, -1 = up), whether the scroll should bounce (1 = yes, 0 = no), and the speed

392

Chapter 24: HTML Tips and Tricks

modification (speedmod, faster values = faster movement). The settings in this function
should be used to tailor your scrolling actions.

� getScrollXY(): This function is called to retrieve the current position of the scroll bars.
It performs basic browser detection to determine how to retrieve the horizontal (x) and
vertical (y) coordinates of the scroll bars. The coordinates are returned in an array, with x
being index 0, and y being index 1.

� setscroll(): This function begins the scrolling action by setting the requisite
variables and setting an Interval timer to move the scroll bar by the specified increment
(speedmod * 20) every 25 milliseconds.

� doscroll(): This function moves the scroll bar every so often as defined by the Interval
timer. Every 25 milliseconds the function is called by the timer and the scroll bar moves via
the scrollBy()JavaScript function. The function then uses the getScrollXY()function
to check whether the before position (y) is the same as the after position (yy). If the two
values are the same, then the scroll bar didn’t move and must be at the beginning or the
end of the document. If that’s the case, then the function chdirscroll()is called to
reverse the scroll bar’s direction (providing bounce is set to 1).

� chdirscroll(): This function reverses the direction of the scroll bar’s movement by
changing the value of dir to 1 (move down) or −1 (move up). The actual movement is
handled by the doscroll()function.

� stopscroll(): This function is used to remove the Interval timer, effectively stopping
the scroll. It is tied to the control <div>’s onMouseOut event and can also be called by
other events or functions that require the scroll bar’s movement to stop.

Tip
To perform other operations on the user agent’s environment, use Google to search for applicable
JavaScript functions. For example, to see how to move the user agent window, search for JavaScript move
window. �

Summary
This chapter presented a handful of HTML tips and tricks you can employ in your documents,
including those related to presenting content, as well as a few on optimizing or speeding up your
document’s delivery. This is the last chapter in the HTML section (Parts I and II). The next part
starts the coverage of CSS.

393

Part III

Controlling
Presentation with CSS

IN THIS PART
Chapter 25
CSS Basics

Chapter 26
Style Definitions

Chapter 27
CSS Values and Units

Chapter 28
CSS Inheritance and
Cascade

Chapter 29
Font Properties

Chapter 30
Text Formatting

Chapter 31
CSS Lists

Chapter 32
Padding, Margins, and Borders

Chapter 33
Colors and Backgrounds

Chapter 34
CSS Layouts

Chapter 35
Pseudo-Elements and Generated
Content

Chapter 36
Dynamic HTML with CSS

Chapter 37
Media Styles and Defining
Documents for Printing

Chapter 38
The Future of CSS: CSS3

CSS Basics

IN THIS CHAPTER
The Purpose of Styles

Styles and HTML

CSS Levels 1, 2, and 3

Defining Styles

Cascading Styles

The Web was founded on HTML and plain-text documents. Over the
last few years the Web has become a household and industrial main-
stay, maturing into a viable publishing platform thanks in no small

part to Cascading Style Sheets (CSS).

CSS enables Web authors and programmers to finely tune elements for
publishing both online and across several different types of media, including
print format. This chapter serves as the introduction to CSS. Subsequent
chapters in this section will show you how to use styles with specific
elements.

The Purpose of Styles
Styles are an electronic publishing invention for dynamically coding text
and other document elements with formatting. For example, a style called
‘‘Heading’’ would be attached to every heading in the document. The style
definition would contain information about how headings should be format-
ted. In this book, for example, headings (such as ‘‘The Purpose of Styles,’’
above) use a larger, bold font.

Note
Anyone who has spent an appreciable amount of time in and around a
word-processing program has no doubt encountered styles. The concept of
styles used by word processors does not differ appreciably from that of CSS
and the Web — if you understand the former, you should have a good grasp
on usage of the latter. �

397

Part III: Controlling Presentation with CSS

The advantage of styles is that you can change a definition once and that change affects every
element using that style. Coding each element individually, by contrast, would require that each
element be recoded individually whenever you wanted them all to change. Thus, styles pro-
vide an easy means to update document formatting and maintain consistency across multiple
documents.

Coding individual elements is best done while the document is being created. This means that
the document formatting is usually done by the author — not always the best choice. Instead,
the elements can be tagged with appropriate styles (such as heading) while the document is
created, and the final formatting can be left up to another individual who defines the styles.

Styles can be grouped into purpose-driven style sheets. Style sheets are like blueprints, holding
groups of styles relating to a common purpose. Style sheets enable multiple styles to be attached
to a document all at once and for all the style formatting in a document to be changed at once.
Therefore, documents can be quickly formatted for different purposes — one style sheet can be
used for documents meant for online consumption, another style sheet can be used (on the same
documents) for brochures, and so on.

Styles and HTML
For a tangible example that uses HTML, consider the following code:

<p><u>Rabbit Run Racing</u></p>
<p>Rabbit Run Racing is similar to many of the "cart" racing games
on the market. You pick a character from one of six available and
race around a small track, picking up power ups and trying to beat
your opponent(s) to the finish line. Rabbit Run Racing supports 1-4
players.</p>
<p><u>Driving Range III</u></p>
<p>Driving Range III is one of the first games to take advantage of
the momentum joystick, using its pendulum-weighted motion to
simulate a golf driving iron. Unfortunately, the game is too simple
to hold much replay value--you drive balls on three different
ranges, two with a handful of trick-shot areas. Driving Range III is
a single-player only game, though you can compare high-scores with
your buddies.</p>
<p><u>Run, Gun, Gore</u></p>
<p>Capitalizing on the revitalized run and gun genre, RGG bring
plenty of everything in its title to the table. The graphics are
surprisingly crisp and the levels are designed well for
deathmatch-style play. Although there are surprisingly few levels in
the current release (10), soon to be released add on packs promise
more theme-driven levels. RGG is a single-player game, but supports
up to 100 players when linked across the NGame network.</p>

Note
For the purpose of this example, ignore the fact that most of the text formatting tags (underline, center, and
so on) have been deprecated. �

398

Chapter 25: CSS Basics

All three heading elements are coded bold and underlined. Now suppose that you wanted
the heading elements to be larger and italicized. Each heading would have to be individually
recoded, similar to the following:

<p><i>Rabbit Run Racing</i></p>

Although using a decent text editor with global search and replace makes this change pretty easy,
consider managing an entire site, with several — if not tens or hundreds of — documents, each
with numerous headings. Each document makes the change exponentially harder.

Now, let’s look at how styles would change the example. With styles, the example could be
coded similarly to the following:

<p class="heading">Rabbit Run Racing</p>
<p>Rabbit Run Racing is similar to many of the "cart" racing games
on the market. You pick a character from one of six available and
race around a small track, picking up power ups and trying to beat
your opponent(s) to the finish line. Rabbit Run Racing supports 1-4
players.</p>
<p class="heading">Driving Range III</p>
<p>Driving Range III is one of the first games to take advantage of
the momentum joystick, using its pendulum-weighted motion to
simulate a golf driving iron. Unfortunately, the game is too simple
to hold much replay value--you drive balls on three different
ranges, two with a handful of trick-shot areas. Driving Range III is
a single-player only game, though you can compare high-scores with
your buddies.</p>
<p class="heading">Run, Gun, Gore</u></p>
<p>Capitalizing on the revitalized run and gun genre, RGG bring
plenty of everything in its title to the table. The graphics are
surprisingly crisp and the levels are designed well for
deathmatch-style play. Although there are surprisingly few levels in
the current release (10), soon to be released add on packs promise
more theme-driven levels. RGG is a single-player game, but supports
up to 100 players when linked across the NGame network.</p>
>

Cross-Ref
There are several methods for applying styles to document elements. Chapter 26 covers ways to define and
use styles. �

The style is defined in the head section of the document, similar to the following:

<head>
<style type="text/css">

p.heading { font-weight: bold; text-decoration: underline; }
</style>

</head>

399

Part III: Controlling Presentation with CSS

This definition defines a heading class that formats text appearing in a paragraph with a heading
as bold and underlined.

Cross-Ref
Style definitions and selectors are covered in Chapter 26. Style property values and units are covered in
Chapter 27. Individual CSS properties are covered in appropriate chapters later in this part of the book. �

To change all the headings in the document to a larger, italic font, the one definition can be
recoded:

<head>
<style type="text/css">
p.heading { font-size: larger; font-style: italic; }

</style>
</head>

CSS Levels 1, 2, and 3
There are three levels of CSS — two levels are actual specifications, whereas the third
level is in recommendation status. The main differences between the three levels are as
follows:

� CSS1 defines basic style functionality, with limited font and limited positioning support.

� CSS2 adds aural properties, paged media, and better font and positioning support. Many
other properties have also been refined.

� CSS3 will add presentation-style properties, enabling you to effectively build presentations
from Web documents (similar to Microsoft PowerPoint presentations).

You don’t have to specify the level of CSS you are using, but you should be aware of what user
agents will be accessing your site. Most modern browsers support CSS, but the level of support
varies dramatically between user agents. It’s always best to test your implementation on target
user agents before widely deploying your documents.

Note
When using styles, keep in mind that not all style properties are well supported by all user agents. This book
attempts to point out major inconsistencies and differences in the most popular user agents, but the playing
field is always changing. �

Defining Styles
Styles can be defined in several different ways and attached to a document. The most popular
method for defining styles is to add a style block to the head of a document:

<head>
<style type="text/css">
...Style definitions...

</style>
</head>

400

Chapter 25: CSS Basics

If you use this method, all style definitions are placed within a style element, delimited by
<style> tags. This tag has the following syntax:

<style type="MIME_type" media="destination_media">

In most cases, the MIME type is ‘‘text/css,’’ as used throughout this chapter. The media attribute
is typically not used unless the destination media is nontextual. The media attribute supports the
following values:

� all
� aural
� braille
� embossed
� handheld
� print
� projection
� screen
� tty
� tv

Note
Multiple style definitions, each defining a style for a different medium and encased in its own <style>
tags, can appear in the same document. This powerful feature enables you to easily define document styles
for a variety of uses and deployment. �

Alternately, the style sheet can be contained in a separate document and linked to documents
using the link (<link>) tag:

<head>
<link rel="stylesheet" type="text/css" href="mystyles.css" />

</head>

The style sheet document, mystyles.css, contains the necessary styles:

...
p.heading { font-size: larger; font-style: italic; }
...

This way, when the style definitions in the external style sheet change, all documents that link
to the external sheet reflect the change. This provides an easy way to modify the format of
many documents — whether to affect new formatting for visual reasons, or for another specific
purpose.

Attaching external style sheets via the link tag should be your preferred method of applying
styles to a document, as it provides the most scalable use of styles — you can change only one
external style sheet to affect many documents.

401

Part III: Controlling Presentation with CSS

Tip
You can add comments to your style section or style sheet by delimiting the comment with /* and */. For
example, the following is a style comment:

/* Define a heading style with a border */ �

Cascading Styles
So where does the ‘‘cascading’’ in Cascading Style Sheets come from? It comes from the fact that
styles can stack, or override, each other. For example, suppose that an internal corporate web-
site’s appearance varies according to the department that owns the various documents. All the
documents need to follow the corporate look and feel, but the Human Resources department
might use people-shaped bullets or apply other small changes unique to that department. The
HR department doesn’t need a separate, complete style sheet for its documents — it needs only
a sheet containing the differences from the corporate sheet. For example, consider the following
two style sheet fragments:

/* corporate.css */
body {
font-family:verdana, palatino, georgia, arial, sans-serif;
font-size:10pt;

}
p {
font-family:verdana, palatino, georgia, arial, sans-serif;
font-size:10pt;

}
p.quote {
font-family:verdana, palatino, georgia, arial, sans-serif;
font-size:10pt;
border: solid thin black;
background: #5A637B;
padding: .75em;

}
h1, h2, h3 {
margin: 0px;
padding: 0px;

}
ul {
list-style-image: url("images/corporate-bullet.png")

}
...
/* humanresources.css */
ul {
list-style-image: url("images/people-bullet.png")

}

402

Chapter 25: CSS Basics

The humanresources.css sheet contains only the style definitions that differ from the corpo-
rate.css sheet; in this case, only a definition for ul elements (using the different bullet). The
two sheets are linked to the HR documents using the following <link> tags:

<head>
<link rel="stylesheet" type="text/css" href="corporate.css" />
<link rel="stylesheet" type="text/css" href="humanresources.css" />

</head>

Note
When a user agent encounters multiple styles that could be applied to the same element, it uses CSS rules
of precedence, covered at the end of this section. �

Likewise, other departments would have their own style sheets and their documents would
link to the corporate and individual department sheets. As another example, members of the
Engineering department might use their own style sheet and declare it in the head of their
documents:

<head>
<link rel="stylesheet" type="text/css" href="corporate.css" />
<link rel="stylesheet" type="text/css" href="engineering.css" />

</head>

Furthermore, individual HTML elements can contain styles themselves:

<ul style="list-style-image: url("images/small-bullet.png");" >

Note
Styles embedded in elements take precedence over all previously declared styles. �

CSS refers to the location of declarations as follows:

� Author origin — The author of a document includes styles in a style section or linked
sheets (via <link>).

� User origin — The user (viewer of document) specifies a local style sheet.

� User Agent origin — The user agent specifies a default style sheet (when no other exists).

Tip
Styles that are critical to the document’s presentation should be coded as important by placing the text
!important at the end of the declaration. For example, the following style is marked as important:

.highlighted { color: blue !important; }

Such styles are treated differently from normal styles when the style to use is determined from the
cascade — styles coded as important override the next level of precedence when being evaluated. �

403

Part III: Controlling Presentation with CSS

The CSS standard uses the following rules to determine which style to use when multiple styles
exist for an element:

1. Find all style declarations from all origins that apply to the element.

2. For normal declarations, author style sheets override user style sheets, which override the
default style sheet. For !important style declarations, user style sheets override author
style sheets, which override the default style sheet.

3. More specific declarations take precedence over less specific declarations.

4. Styles specified last have precedence over otherwise equal styles.

Summary
This chapter covered the basics of CSS — how styles are attached to a document, how they are
best used, the different levels of CSS, and how the ‘‘cascade’’ in Cascading Style Sheets works.
You learned the various ways to embed and define styles, and more about the separation between
content and formatting that CSS can provide. The next chapter delves into the ins and outs of
style definitions. Subsequent chapters in this part of the book will show you how styles are best
used with various elements.

404

Style Definitions

IN THIS CHAPTER
The Style Definition Format

Understanding Selectors

Understanding Style
Inheritance

Using Pseudo-Classes

Pseudo-Elements

Shorthand Expressions

By this point in the book, you should recognize the power and ver-
satility that styles can bring to your documents. You have seen how
styles can make format changes easier and how they adhere to the

content versus formatting separation. Now it’s time to learn how to create
styles — the syntax and methods used to define styles for your documents.

The Style Definition Format
CSS style definitions all follow the same basic format. A definition starts with
a selector expression used to match elements within the documents(s), and is
followed by one or more style properties and value sets. Roughly, this format
approximates the following structure:

selector {
property: value(s);
property: value(s);
...

}

The selector is an expression that can be used to match specific ele-
ments within HTML documents. Its simplest form is an element’s name, such
as h1, which would match all h1 elements. At its most complex, the selec-
tor expression can be used to match individual sub-elements of particular
elements or to specify text to include before or after matched elements.

Cross-Ref
Selectors are covered in depth within the next section of this chapter. Accept-
able property values are covered in Chapter 27. Individual CSS properties are
covered in topical chapters, Chapter 29 through Chapter 37. �

405

Part III: Controlling Presentation with CSS

The property component of a style rule specifies which properties of the element the
definition will affect. For example, to change the color of an element you would use the color
property. Note that some properties affect only one aspect of an element, whereas others
combine several properties into one declaration. For example, the border property can be
used to define the width, style, and color of an element’s border — and each of the properties
(width, style, color) has its own property declarations as well (border-width, border-style,
and border-color).

The values(s)component of a style rule contains one or more values that should be assigned
to the properties. For example, to specify an element’s color as red, you would use red as the
value for the color property.

Now, let’s look at all these elements of a style declaration in a real example. The following style
definition can be used to change all the first-level headings (h1 elements) in a document to
red text:

h1 {
color: red;

}

The actual formatting of the style declarations can vary, but must follow these rules:

� The selector or selector expression must be first.

� Braces ({ and }) must follow the selector and enclose the style property-value pairs.

� Each style property-value pair must end with a semicolon (;).

It is also suggested, but not absolutely necessary, that style definitions be formatted with liberal
white space — spaces between elements of the definition, line breaks between property-value
pairs, sub-elements indented, and so on. Feel free to add as many spaces, line breaks, and tabs as
you like, as the amount of white space does not matter. What is important is that the definitions
are legible.

For example, both of the following definitions produce identical results, but they are formatted
quite differently:

h1 { color: red; border: thin dotted black; font-family: helvetica,
sans-serif; text-align: right;}

h1 {
color: red;
border: thin dotted black;
font-family: helvetica, sans-serif;
text-align: right;

}

406

Chapter 26: Style Definitions

Understanding Selectors
Selectors are patterns that enable a user agent to identify what elements should get what styles.
For example, the following style says, in effect, ‘‘If it is a paragraph element (p), then give it
this style’’:

p { text-indent: 2em;}

The rest of this section shows you how to construct selectors of different types to best match
styles to the elements within your documents.

Matching elements by type
The easiest selector to understand is the plain element selector, as in the following example:

h1 { color: red;}

Using the actual element type (h1) as the selector causes all objects within h1 elements to be
formatted with the property-value section of the definition (color: red). You can also specify
multiple selectors by listing them all in the selector area, separated by commas. For example, the
following definition will affect all levels of heading elements (1 through 6) in the document:

h1, h2, h3, 4h, h5, h6 { color: red;}

Matching using the universal selector
The universal selector, designated by an asterisk (*), can be used to match any element in the
document. As an extreme example, you can use the universal selector to match every tag in a
document:

* { color: red;}

Using this rule, every tag will have the color:red property-value applied to it. You would
rarely want a definition to apply to all elements of a document, of course, although you can
also use the universal selector to match other elements than the selector specifically defines.
The following selector matches any ol element that is a descendant of a td element, which is a
descendant of a tr element (an ordered list in a cell in a row of a table):

tr td ol { color: red;}

Cross-Ref
More information on child/descendant selectors can be found in the section ‘‘Matching child, descendant,
and adjacent sibling elements’’ later in this chapter. �

407

Part III: Controlling Presentation with CSS

This selector rule is very strict, requiring all three elements. If you also wanted to include descen-
dant ol elements of th elements or ol elements occurring within p elements, you would need
to specify additional selectors, or use the universal selector to match all elements that might
occur between tr and ol, as in the following example:

tr * ol { color: red;}

You can use the universal selector within any of the selector forms discussed in this chapter.

Matching elements by class
You can use selectors to match element classes. Suppose you had two areas in your document
with different backgrounds, one light and one dark. You would want to use dark-colored text
within the light background area and light-colored text within the dark background area. You
could use light_bg and dark_bg classes in your style selector and applicable elements to
ensure that the appropriate text colors were applied within the areas.

To specify a class to match with a selector, you append a period and the class name to the selec-
tor. For example, the following style will match any paragraph element with a class of dark_bg:

p.dark_bg { color: white;}

Suppose the following paragraph were in the area of the document with the dark background:

<p class="dark_bg">Based on the preview we were given at Rodent Stu-
dios, Gopher Hunt promises to be a great game.</p>

The specification of the dark_bg class with the paragraph tag will match the defined style, caus-
ing the paragraph’s text to be rendered in white.

The universal selector can be used to match multiple elements with a given class. For example,
this style definition will apply to all elements that specify the dark_bg class:

*.dark_bg { color: white;}

You can omit the universal selector, specifying only the class itself (beginning with a period):

.dark_bg { color: white;}

Tip
One little-known and infrequently used trick is to give HTML elements more than one class. For example,
we can give our sample paragraph both the dark_bg and bold_text classes:

<p class="dark_bg bold_text"> . . .

Using this method, the tag can be influenced by two different styles: one influencing the dark_bg class and
one influencing the bold_text class.

You can give HTML elements as many classes as you like, but if two class-based styles conflict, the last one
listed will be used. �

408

Chapter 26: Style Definitions

Matching elements by identifier
You can also use selectors to match element identifiers — the id attribute of element(s). To
match identifiers, use the pound sign (#) as a prefix for the selector, followed by the id. For
example, the following style will match any tag that has an id of comment:

#comment { background-color: green;}

Matching elements by specific attributes
You can use a selector to match any attribute in elements, not just class and id. To do so,
you specify the attribute and the value(s) you want to match at the end of the selector, offset in
square brackets. This form of the selector has the following format:

element[attribute="value"] { property: value(s);}

For example, if you want to match any table element with a border attribute set to 3, you
can use this selector:

table[border="3"]

You can also match elements that contain the attribute, no matter what the value of the attribute,
by omitting the equal sign and attribute value. To match any table element that contains a
border attribute (of any value), you can use this selector:

table[border]

Tip
You can combine two or more selector formats for even more specificity. For example, the following selec-
tor will match table elements with a class value of datalist, and a border value of 3:

table.datalist[border="3"] �

Multiple attributes within the same selector can also be specified. Each attribute is specified in its
own bracketed expression. For example, if you wanted to match table elements with a border
value of 3 and a width value of 100%, you would use the following selector:

table[border="3"][width="100%"]

In addition, you can match single values that are contained within a space- or hyphen-separated
list value. To match a value in a space-separated list, use tilde equal (∼=) instead of the usual
equal sign (=). To match a value in a hyphen-separated list, you use bar equal (|=) instead of
the usual equal sign. For example, the following selector would match any attribute that has ‘‘us’’
in a space-separated value of the language attribute:

[language∼="us"]

409

Part III: Controlling Presentation with CSS

Matching child, descendant, and adjacent sibling
elements
The most powerful selector methods match elements by their relationships to other elements
within a document. For example, you can specify a selector style that matches italic elements
only when appearing within a heading, or list items only within ordered (not unordered) lists.

Understanding document hierarchy
The elements in an HTML document are related to each other in a hierarchical manner. The hier-
archy follows the same nomenclature as family trees — ancestors, parents, children, descendants,
and siblings — with the <html> tag as the root of the document tree. For example, consider the
following, fairly simplistic document code. Figure 26-1 shows a document and its hierarchy.

<html>
<body>
<div class="div1">
<h1>Heading 1</h1>
<table>
<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

</div>
<div class="div2">
<h1>Heading 2</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>
An ordered list
First element,
Second element
Third element

</div>
</body>
</html>

Ancestors and descendants
Ancestors and descendants are elements that are linked by lineage, no matter the distance
between them. For example, in Figure 26-1, the list elements under div2 are descendants
of the body element, and the body element is their ancestor, even though multiple elements
separate the two.

410

Chapter 26: Style Definitions

Parents and children
Parents and children are elements that are directly connected in lineage. For example, in
Figure 26-1 the table rows (tr) under div1 are children of the table element, which is their
parent.

FIGURE 26-1

Diagram of a document’s hierarchy

div1

tr

div2

body

tableh1 p

td td

ph1 ol

tr

td td

li

li

li

Siblings
Siblings are children that share the same, direct parent. In Figure 26-1, the list elements (li)
under div2 are siblings of each other. The header (h1), paragraph (p), and table (table) ele-
ments are also siblings because they share the same, direct parent (div1).

Selecting by hierarchy
Several selector mechanisms are available that enable you to match elements by their hierarchy
in the document.

To specify ancestor and descendant relationships, list all involved elements, separated by spaces.
For example, the following selector matches the li elements in Figure 26-1 (li elements within
a div that has a class of div2):

div.div2 li

411

Part III: Controlling Presentation with CSS

To specify parent and child relationships, list all involved elements, separated by a right angle
bracket (>). For example, the following selector matches the table element in Figure 26-1
(a table element that is a direct descendant of a div element that has a class of div1):

div.div1 > table

To specify sibling relationships, list all involved elements, separated by plus signs (+). For
example, the following selector matches the p element under div1 in Figure 26-1 (a p element
that has a sibling relationship with a table element):

table + p

Of course, you can mix and match the hierarchy selector mechanisms for even more specificity.
For example, the following selector will match only table and p sibling elements that are also
children of the div with a class value of div1:

div.div1 > table + p

Understanding Style Inheritance
Style inheritance is an important concept when working with CSS. The term inheritance reflects
the fact that an element acquires the properties of its ancestors. In CSS, all foreground properties
are inherited by descendant elements. For example, the following definition would result in all
elements being rendered in green because every element in the document descends from the
body tag:

body { color: green;}

Note that this inheritance rule is valid only for foreground properties. Background properties
(background color, image, and so on) are not automatically inherited by descendant elements.

You can override inheritance by defining a style for an element with a different value for the
otherwise inherited property. For example, the following definitions result in all elements being
rendered with a green foreground, except for paragraphs with a nogreen class, which are ren-
dered with a red foreground:

body { color: green;}
p.nogreen { color: red;}

Attributes that are not in conflict are cumulatively inherited by descendant elements. For
example, the following rules result in paragraphs with an emphasis class being rendered in
green, bold text:

body { color: green;}
p.emphasis { font-weight: bold;}

412

Chapter 26: Style Definitions

Using Pseudo-Classes
You have at your disposal a handful of pseudo-classes to match attributes of elements in your
document. Pseudo-classes are identifiers that are understood by user agents, and they apply to
elements of certain types without the elements having to be explicitly styled. Such classes are
typically dynamic in nature; as such, they are tracked by means other than the static class
attribute.

For example, there are pseudo-classes used to modify visited and unvisited anchors in the docu-
ment. Using the pseudo-classes, you don’t have to specify classes in individual anchor tags — the
user agent determines which anchors are in which class (visited or not) and applies the style(s)
appropriately in real time as the user browses.

The following sections discuss the available pseudo-classes.

Anchor styles
A handful of pseudo-classes can be used with anchor tags (<a>). The anchor pseudo-classes are
listed in Table 26-1.

TABLE 26-1

Pseudo-Classes for Anchor Tags

Pseudo-Class Matches

:link Unvisited links

:visited Visited links

:active Active links

:hover The link over which the browser pointer is hovering

:focus The link that currently has the user interface focus

For example, the following definition will cause all unvisited links in the document to be ren-
dered in blue, all visited links in red, and when hovered over, in green:

:link { color: blue;}
:visited { color: red;}
:hover {color: green;}

Note
All pseudo-class definitions begin with a colon (:) and the pseudo-class name. �

413

Part III: Controlling Presentation with CSS

The order of the definitions is important; because the link membership in the classes is dynamic,
:hover must be the last definition. If the order of :visited and :hover were reversed, then
visited links would not turn green when hovered over because the :visited color attribute
would override the :hover color attribute. Ordering is also important when using the :focus
pseudo-class — it should be placed last in the definitions.

Pseudo-class selectors can also be combined with other selector methods. For example, if you
wanted all nonvisited a elements with a class attribute of boldme to be rendered in a bold font,
you could use the following code:

/* Add explicit "boldme" class to non-visited pseudo class */
:link.boldme { font-weight: bold;}
...
<!-- The following link is important! -->
<a href="http://something.example.com/important.html"
class="important">An important message

The :first-child pseudo-class
The :first-child pseudo-class is used to assign style definitions to the first child element
of a specific element. You can use this pseudo-class to add more space or otherwise change the
formatting of a first child element. For example, if you need to indent the first paragraph inside
specific div elements (having an indent class), you could use the following definition:

div.indent > p:first-child { text-indent: 25px;}

This code results in only the first paragraph (p) element of all div elements having a class of
indent being indented by 25px (pixels).

The :lang pseudo-class
The :lang pseudo-class is used to change elements according to the language being used for
the document. For example, the French language uses angle brackets (< and >) to offset quotes,
whereas the English language uses quote marks (" and "). If you need to address this differ-
ence in a document (seen by both French and English native readers), you could use a definition
similar to the following:

/* Two levels of quotes for two languages */
.quote:lang(en) { quotes: "" "" ""’ ""’;}
.quote:lang(fr) { quotes: "{\ll}" "{\gg}" "<" ">";}
/* Add quotes (before and after) to quote class */
.quote:before { content: open-quote;}
.quote:after { content: close-quote;}

This code would cause any element having a class of quote to be placed in appropriate quote
characters, depending on the current language setting of the document or user agent.

Note
The pseudo-elements :before and :after are used in the preceding example to automatically place quote
characters around elements. These two pseudo-classes are covered in the next section. �

414

Chapter 26: Style Definitions

Pseudo-Elements
Pseudo-elements are another virtual construct to help apply styles dynamically to elements
within a document. For example, the :first-line pseudo-element applies a style to the first
line of an element dynamically — that is, as the first changes size (longer or shorter), the user
agent adjusts the style coverage accordingly.

First line
The :first-line pseudo-element specifies a different set of property values for the first line of
elements. This is illustrated in the following document listing and in Figure 26-2, which shows
two browser windows of different widths, highlighting how the underlining of the first sentence
is dynamic thanks to the pseudo-element first-line style:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>First-line formatting</title>
<style type="text/css">

p:first-line { text-decoration: underline;}
p.noline:first-line { text-decoration: none;}

</style>
</head>
<body>
<h1>The Oasis of Tranquility</h1>
<p class="noline">The Founding and Mission of The Oasis</p>
<p>Founded in 2001, The Oasis of Tranquility strives to be a

different, pleasurable experience for those seeking to get away from
their daily routine. Staffed by individuals each with specific
specialties, The Oasis provides the luxuries of many day spas, but at
salon prices. The main mission of The Oasis is that personal luxury
doesn’t have to be expensive.</p>
</body>
</html>

Note
The preceding code example manages element formatting by exception. Most paragraphs in the document
should have their first line underlined. A universal selector is used to select all paragraph tags. A different
style, using a class selector (noline), is defined to select elements that have a class of noline. Using this
method, you only need to add class attributes to the exceptions (the minority), rather than the rule (the
majority). �

The :first-line pseudo-element can affect only a finite range of properties. Only prop-
erties in the following groups can be applied using :first-line — font properties, color
properties, background properties, word-spacing, letter-spacing, text-decoration,
vertical-align, text-transform, line-height, text-shadow, and clear.

415

Part III: Controlling Presentation with CSS

FIGURE 26-2

You can use the first-line pseudo-element to dynamically apply properties to a paragraph’s first
line — when the first line’s length changes, so does application of the properties.

First letter
The :first-letter pseudo-element is used to affect the properties of an element’s first letter.
This selector can be used to achieve typographic effects such as drop caps, as illustrated in the
following code and Figure 26-3:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Drop cap formatting</title>
<style type="text/css">
p.dropcap:first-letter { font-size: 3em;

font-weight: bold; float: left;
border: solid 1px black; padding: .1em;
margin: .2em .2em 0 0;}

</style>
</head>

416

Chapter 26: Style Definitions

<body>
<h1>The Oasis of Tranquility</h1>
<p>The Founding and Mission of The Oasis</p>
<p class="dropcap"> Founded in 2001, The Oasis of Tranquility

strives to be a different, pleasurable experience for those seeking
to get away from their daily routine. Staffed by individuals each
with specific specialties, The Oasis provides the luxuries of many
day spas, but at salon prices. The main mission of The Oasis is that
personal luxury doesn’t have to be expensive.</p>
</body>
</html>

FIGURE 26-3

The first-letter pseudo-element can be used for effects such as drop caps on user agents that
support it.

Before and after
You can use the :before and :after pseudo-elements to add additional text to specific ele-
ments. These pseudo-elements were used in the section ‘‘The :lang pseudo-class,’’ to add quote
marks to the beginning and ending of elements with a quote class:

.quote:before { content: ‘"’;}

.quote:after { content: ‘"’;}

417

Part III: Controlling Presentation with CSS

Notice the use of the content property. This property assigns the actual value to
content-generating elements such as :before and :after. In this case, quote marks
are assigned as the content to add before and after elements with a quote class. The following
code and Figure 26-4 illustrate how a user agent that supports these classes generates content
from the :before and :after pseudo-elements:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Auto-quote marks</title>
<style type="text/css">
.quote:before { content: ‘"’;}
.quote:after { content: ‘"’;}
</style>

</head>
<body>
<p class="quote">I set out to create a spa different from any other.

I was tired of seeing the average, every-day consumer pay top dollar
for a personal luxury service that wasn’t even as good as a salon
service. I decided that with the right people and minimized overhead
I could create a day spa like experience for much less.</p>
</body>
</html>

Generated content breaks the division of content and presentation. However, adding presentation
content is sometimes necessary to enhance the overall appeal of a document. Besides adding ele-
ments such as quote marks, you can also create counters for custom numbered lists, and other
more powerful features.

Note
Some user agents have poor support for pseudo-elements. �

Shorthand Expressions
CSS supports many properties for control over elements. Many of the properties overlap or affect
only slightly different areas of an element. For example, consider the following properties, all of
which apply to element borders:

� border
� border-collapse
� border-spacing
� border-top
� border-right
� border-bottom
� border-left
� border-color
� border-top-color

418

Chapter 26: Style Definitions

� border-right-color
� border-bottom-color
� border-left-color
� border-style
� border-top-style
� border-right-style
� border-bottom-style
� border-left-style
� border-width
� border-top-width
� border-right-width
� border-bottom-width
� border-left-width

FIGURE 26-4

The :before and :after pseudo-elements can be used to add characters such as quote marks to text.

Several of these properties can be used to set multiple properties within the same definition. For
example, to set an element’s four-sided border you can use code similar to the following:

p.bordered {
border-top-width: 1px;
border-top-style: solid;

419

Part III: Controlling Presentation with CSS

border-top-color: black;
border-right-width: 2px;
border-right-style: dashed;
border-right-color: red;
border-bottom-width: 1px;
border-bottom-style: solid;
border-bottom-color: black;
border-left-width: 2px;
border-left-style: dashed;
border-left-color: red;

}

Alternately, you could use the shorthand property border-side to shorten this definition con-
siderably:

p.bordered {
border-top: 1px solid black;
border-right: 2px dashed red;
border-bottom: 1px solid black;
border-left: 2px dashed red;

}

This definition could be further simplified by use of the border property, which sets all sides
of an element to the same values:

p.bordered {
border: 1px solid black;
border-right: 2px dashed red;
border-left: 2px dashed red;

}

The preceding code shortens the definition by first setting all sides to the same values and then
setting the exceptions (right and left borders).

Tip
As with all things code, avoid being overly ingenious when defining your styles. Otherwise, you will dramat-
ically decrease your code’s legibility. �

Summary
This chapter explained the basics of defining styles — from the format and use of the various
selector methods to the format of property declarations and setting their values. You also learned
about special pseudo-classes and pseudo-elements that can make your definitions more dynamic.
The next series of chapters in this book delve into specific style use for text, borders, tables,
and more.

420

CSS Values and Units

IN THIS CHAPTER
General Property Value Rules

Property Value Metrics

CSS is a rich language offering property-based control over many
aspects of your HTML documents. Because the many aspects of the
document differ from one another, several different types of metrics

must be available — scales of units, such as inches, picas, and such — to
be able to adequately apply values to their properties. This chapter covers
the various types of metrics available in CSS and some reasoning regarding
where and why to use each.

Cross-Ref
This chapter summarizes the syntax of values in CSS definitions and the vari-
ous metric values available in CSS. For specific uses of each metric with each
property, see the specific coverage of the individual properties in Chapters 29
through 35. �

General Property Value Rules
A style definition’s property/value section is contained within the
braces of the definition. For example, in the following definition,
border-width: 3pt is the property/value clause:

p.bordered { border-width: 3pt; }

In this clause, the property (border-width) and value (3pt) are separated
by a colon and the clause is terminated by a semicolon.

Tip
Technically speaking, the last (or only) property/value clause in a style defini-
tion does not need a closing semicolon. However, it is generally good practice
to include a semicolon at the end of every property/value clause. �

421

Part III: Controlling Presentation with CSS

The property half of the clause is fairly straightforward; it is a CSS property keyword. The
property/value-separating colon comes next, terminating the property half of the clause.

The value half of the clause is a bit more complex, and a myriad of values and units can be used.
However, the general structure of this half is uniform, and contains the following elements, in
the following order:

1. An optional unary sign (+/–)

2. A keyword, number, function (url, rgb, and so on), or textual string

3. An optional abbreviation signifying the metric value of the value (%, cm, pt, and so on)

There can be no white space between the items listed; they must be one contiguous string of
characters. Also note that the ‘‘optional’’ component of the metric abbreviation is driven by the
value, not by the style coder’s whim. For example, the percentage metric identifier is always
necessary when you want a value specified as a percentage. Omitting the metric would create
ambiguity, and most user agents would just treat the value as if it were pixels, which would not
create the result you desired. However, properties such as font-size-adjust can have only
numeric values — as such, no metric abbreviation is necessary.

Tip
Although there can be no white space in the value of a property, there can be white space around the
value. You can use this space (after the colon and before the semicolon) to format your definitions for
legibility. �

An illustrated example of the value half of a property/value clause is shown in Figure 27-1.

FIGURE 27-1

Illustrated example of a CSS property’s value clause

property value

value

metric

unary sign
(optional)

font–size: –20%

422

Chapter 27: CSS Values and Units

Some properties support more than one value in a property/value statement. For example, the
shortcut property border can specify an element’s border width, style, and color all in one
definition. Such a definition would resemble the following:

p.bordered { border: thin solid black; }

To specify multiple values within one property/value statement, simply separate each value from
the others using white space — one or more spaces, a line break, and so on. The list of values
should still begin after the colon and should still end with a semicolon, just like single-valued
statements.

Property Value Metrics
Throughout this chapter you have seen how to apply values to properties using CSS. Now let’s
look at the values themselves. Property values can be expressed in several different metrics
according to the individual property and the desired result.

CSS supports the following metrics for property values:

� Keywords such as thin, thick, transparent, ridge, and so forth

� Real-world measures

� inches (in)

� centimeters (cm)

� millimeters (mm)

� points (pt) — The points used by CSS2 are equal to 1
72 of an inch

� picas (pc) — 1 pica is equal to 12 points

� Screen measures in pixels (px)

� Relational to font size (font size [em] or x-height size [ex])

� Percentages (%)

� Color codes (keywords, #rrggbb, or rgb(r,g,b))

� Angles — Used with aural style sheets

� degrees (deg)

� grads (grad)

� radians (rad)

� Time values (seconds [s] and milliseconds [ms]) — Used with aural style sheets

� Frequencies (hertz [Hz] and kilohertz [kHz]) — Used with aural style sheets

� Textual strings

� URLs — Links to other resources on the Web (via the url() function)

423

Part III: Controlling Presentation with CSS

Which metric is used depends on the value you are setting and your desired effect. For example,
it doesn’t make sense to use real-world measures (inches, centimeters, and so on) unless the user
agent is calibrated to use such measures or your document is meant to be printed.

The following sections cover the various unit values.

Note
As with other elements in CSS (property names, reserved names, keywords, and so on), metric abbrevia-
tions are case sensitive. Be sure to use them as shown in this chapter, mostly lowercase (pt for points, and
so on). �

Keyword values
Many keywords have distinct meaning when used as CSS property values. For example, you can
define a border property as follows:

border: thin solid black;

In this case, thin, solid, and black are all keywords applied to one property. The last key-
word (black) is a specific keyword — a color keyword — that is used in a variety of places in
Web coding, including HTML attribute values. The other two keywords, thin and solid, are
used only with border-related properties.

That brings up an important point with keyword values: Most of them are valid only when used
with specific properties. For example, the value solid is meaningless when used with the font
property.

Cross-Ref
The various keywords available in CSS, along with the respective properties to which they can apply, are
covered within Chapters 29 through 35. The keywords are covered in Appendix C. �

One specific keyword, inherit, can be applied to almost any CSS property. This keyword
implies that the property to which it applies should inherit the values of its parent. Of course,
omitting a definition for the specific property would generally have the same effect due to the
inheritance rules of CSS. However, there are times when intervening style rules might affect an
object’s inheritance, in which case you will need to explicitly specify that an object should inherit
properties.

As an example, the following definition explicitly specifies that paragraph tags with a class of
highlight should inherit their parent element’s border properties but have their text rendered
in a bold font:

p.highlight { border: inherit;
font-weight: bold; }

424

Chapter 27: CSS Values and Units

Real-world measures
CSS property values can be specified in the following real-world measures:

� Inches (in)

� Centimeters (cm)

� Millimeters (mm)

� Points (pt)

� Picas (pc)

These metrics can be used with almost any property that defines the length, width, or
depth of an element. To use these metrics, you would use an appropriate numeric value
with the suffix corresponding to the metric you are using. For example, to specify that an
element with a class of tall should have a height of 2 inches, you can use the following
definition:

.tall { height: 2in; }

Note
Points and picas are traditionally font-related measures. As such, they are typically used with font-related
CSS properties. However, because they both have absolute measures — a point is equal to 1

72 of an inch
and a pica is equal to 12 points — you can use these metrics with any property that can take a length,
width, or depth measure. �

The border properties are good examples of where real-world metrics are often used. In the
following example, the style definition specifies that all td elements should have a 2-point top
and left border and a 4-point bottom and right border:

td { border-top: 2pt;
border-left: 2pt;
border-bottom: 4pt;
border-right: 4pt; }

These values can be translated by several means, resulting in a proper border displayed
on the user agent’s screen. Typically, the user agent uses the same rules it uses for fonts,
resulting in the points of a border width being the same scale as the points of a display
font. This method helps keep everything in scale if the user agent employs a zoom function
or other screen-scaling function — if the screen is magnified, then the fonts and border grow
larger. Still, if you want a border in a particular size no matter the scaling on the user agent,
specify your measures in screen metrics (pixels).

Specifying metrics in real-world measures is especially important in documents that are meant to
be printed or that have some other real-world metric connection.

425

Part III: Controlling Presentation with CSS

Screen measures
Any property that expresses a length, width, or depth value can be expressed in pixels. Pixels
are the dots that make up a computer screen — one pixel equals one dot on screen. Pixels are
expressed as a metric in style definitions by suffixing a value with px. For example, the following
style definition specifies that the top border of all td elements should be 2 pixels wide:

td { border-top: 2px; }

Pixel metrics are often used to ensure that a user agent’s screen renders a document to an exact
size. Because the pixel metric is not relative and directly influences the screen, it can be a pow-
erful tool. However, it can have undesired side effects if the user agent screen is an odd size or
it employs any type of display scaling mechanism. In the latter case, your specified pixel metric
elements may not scale appropriately.

Note
Many user agents assume that a property’s value is given in pixels if no other metric is specified. This means
that the following two definitions will typically produce the same results:

p.px_specified { border: 2px; }
p.px_notspecified { border: 2; }

This is not always the case, however, and should not be relied upon; some user agents may ignore your
styles if they do not include proper metric identifiers. Always specify the proper metrics for your property
values to ensure that they are rendered properly on screen. �

Relational measures
Three metrics can be used to specify that a value should be set in relation to another value. For
example, the following definition sets all table widths to half (50 percent) of their parent ele-
ment’s width:

table { width: 50%; }

The other two metric specifications — em and ex — refer to font sizes. The em metric refers to
the height of the current font, whereas the ex metric refers to the height of the letter x in the
current font (generally half the font’s height). These two metrics specify their values as related to
the current element’s font-height property value. However, if either metric is used to specify
an element’s font-height property, the value specified is related to the parent’s font-height
property. The percentage metric (%) always relates to the parent’s properties.

That last statement, ‘‘always relates to the parent’s properties,’’ is an important one. Many
people assume that a table whose width is set to 50 percent will span half the user agent screen

426

Chapter 27: CSS Values and Units

because the parent element of the table in question spans the entire screen width. But what
happens when that isn’t the case, when the parent element is not 100 percent as wide as the
user agent?

Consider the following example and Figure 27-2, which shows how a table with a width spec-
ified as 50 percent can be a smaller fraction (25 percent) as wide as the user agent if its parent
element is set to a smaller percentage width (50 percent):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Specifying Widths of Parent Elements</title>
<style type="text/css">
body { border: thin solid black;

padding: 5px; }
div { width: 50%;

border: thin dotted black;
margin: 5px;
padding: 5px; }

table { width: 50%; }
</style>
</head>
<body>
<div>
<table border="1">

<tr><td>Table Row 1</td></tr>
<tr><td>Table Row 2</td></tr>

</table>
</div>
</body>
</html>

The elements in the preceding example were given borders and extra padding to make the
borders more evident. Using the borders, it is easy to see how the body element stretches to
100 percent of the user agent window’s width, the div element occupies 50 percent of the
body element’s width (and hence 50 percent of the window), and the table element occupies
only 25 percent of the window (50 percent of the div). In short, the table element is only
25 percent of the window because its width property is relative to its parent element’s width
property, not the user agent’s window width.

The em and percent metrics can be quite powerful, specifying a value that changes as the
element sizes around it change. The em and percent metrics are best used when you need a
relational, not absolute, value.

427

Part III: Controlling Presentation with CSS

FIGURE 27-2

The percentage metric always relates to the element’s parent properties.

Color and URL functions
Two functions provide color and url values to properties.

The rgb() function (red, green, blue) takes three arguments to provide a color to a property via
the mix of the values given. The arguments are values of the colors red, green, and blue to be
mixed together to create the color desired. The values themselves are decimal numbers between
0 and 255 or percentage values between 0 and 100. In either case, 0 signifies no amount of
the color specified, and the highest number (255 or 100 percent) is the most mix of the color
specified. For example, consider the following:

border-color: rgb(0,0,0); /* black (absence of color) */
border-color: rgb(255,255,255); /* white (full mix of all colors) */
border-color: rgb(100%,0%,100%); /* purple (red and blue mix) */
border-color: rgb(100%,0%,0%); /* red (100% red only) */
border-color: rgb(255,125,0); /* orange (red and green mix) */

The rgb() function can only be used where a color value can be provided, such as for a
color, background-color, or border-color property. Keep in mind that the HTML-style,

428

Chapter 27: CSS Values and Units

hexadecimal shorthand method of specifying color values is also available in CSS. This method
has the following syntax:

#rrggbb

The letters signify hexadecimal digits for the colors red (rr), green (gg), and blue (bb). Using
the two digits you can specify values between 0 and 255, as in the rgb() function. For
example, the following is an example of the value orange, mixing a value of 255 red with 125
green:

border-color: #FF7D00;

The url() function is used to specify a URL — the Web or Internet address of a resource — to
a property. The syntax of this function is very simple; the URL is encased between the parenthe-
ses in optional quote marks. For example, the following code specifies a background image for a
table found in the images directory of the current site:

background-image: url("images/star-background.jpg");

Keep in mind that the URL specified does not have to be a local path. You can specify a resource
located on another server as long as it is accessible to the user agent. For example, this code
specifies a similar image but one located on a remote server:

background-image:
url("http://www.on-target.com/images/star-background.jpg");

The URL can be encapsulated by single or double quotes. Although technically the quotes are
optional, it’s always a good idea to include them to help the parsing of your URL string. Note
that, in any case, parentheses, commas, white space characters, single quotes, and double quotes
must be escaped if they appear in the URL. To escape a character, simply prefix it with a back-
slash. For example, \ would adequately escape a comma.

Aural metrics
Several metrics are used with aural style properties, such as azimuth and pitch. These prop-
erties control the position and properties of sounds generated via aural style sheets. Metrics that
can be used with such properties include the following:

� Angles — Used with positioning properties

� degrees (deg)

� grads (grad)

� radians (rad)

� Time values (seconds [s] and milliseconds [ms]) — Used with sound properties

� Frequencies (hertz [Hz] and kilohertz [kHz]) — Used with sound properties

429

Part III: Controlling Presentation with CSS

Each metric is used by specifying a decimal number and suffixing it with the appropriate suffix
for the metric. For example, to specify an azimuth of 120 degrees, you can use the following
property/value statement:

azimuth: 120deg;

Tip
For a good overview of aural style sheets, including a breakdown of browser support, visit
http://lab.dotjay.co.uk/tests/css/aural-speech/. �

Summary
There are almost as many metrics in CSS as there are properties. This has to do with the rich
nature of the technology and its ability to influence many aspects of a document, because each
characteristic of a document can use certain metrics, and the properties of these metrics are
related to the characteristic where they’re used. This may seem confusing at first, but the next
few chapters help connect distinct metrics with distinct properties. In no time you will settle
into your favorite metrics, and their use will become habit.

The next chapter covers the very important topics of cascade and inheritance, or how CSS styles
and properties affect one another. From there, the other CSS chapters are broken into CSS topic
areas — fonts, text, tables, and so on.

430

CSS Inheritance
and Cascade

IN THIS CHAPTER
Inheritance

Cascade

Specificity

The words ‘‘inheritance’’ and ‘‘cascade’’ are bandied about a lot in
regard to CSS. They are often used interchangeably. However, they
each have a unique style-related meaning. This chapter clarifies these

terms and their meanings in CSS.

Inheritance
The word ‘‘inheritance’’ is defined by Webster’s Dictionary as ‘‘a) the act of
inheriting property; b) the reception of genetic qualities by transmission from
parent to offspring; c) the acquisition of a possession, condition, or trait from
past generations.’’ This definition is accurate for the behavior of HTML ele-
ments controlled by CSS — child elements inherit the properties of their
parents.

For example, consider the following document, whose output is shown in
Figure 28-1:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Inheritance Example</title>
<style type="text/css">
table { background-color: red; }

</style>
</head>
<body>
<table border="1">
<tr>

431

Part III: Controlling Presentation with CSS

<th>Column One</th>
<th>Column Two</th>

</tr>
<tr>
<td>Cell One</td>
<td>Cell Two</td>

</tr>
</table>
</body>
</html>

FIGURE 28-1

The table rows and cells inherit the table’s background-color property.

The table’s background-color definition applies to all table elements (table), all table row
elements (tr), and all table cell elements (th and td) in the document.

The rows and cells are also colored red because they are child elements of the table and inherit
the table’s background color property. The main body of the document, the parent of the table,
does not inherit the background color because it is a parent of the table, not a child.

Inheritance can be more complex. For example, consider the following style definitions:

p { border: thin solid black; }
p.redbottom { border-bottom: thin dotted red; }

432

Chapter 28: CSS Inheritance and Cascade

The first definition will cause all paragraph elements (p) in the document to have solid black
borders on all sides. The second definition will cause paragraph elements with a class of red-
bottom to have solid black borders on three sides (top, right, and left) and a dotted red border
on the bottom, as shown in Figure 28-2.

FIGURE 28-2

The second paragraph has its bottom border specified by a specific class-based style but inherits its
other borders from a generic paragraph style.

However, the second definition doesn’t include property values for borders on any side other
than the bottom. Where then do these other property values come from? They are inherited from
the generic paragraph element definition.

Cascade
The term ‘‘cascade’’ has an entirely different meaning than ‘‘inheritance.’’ The means by which
styles come together to relate to a document is the cascade. Styles can be applied to a document
from many different sources. These sources include the following:

� Author styles — Styles that the document author includes, whether embedded directly
in the head of the document, linked in as a separate style sheet (using the link tag, or the

433

Part III: Controlling Presentation with CSS

CSS @import rule), or inline in individual elements. These styles represent the way the
author intends the document to look.

� User styles — Styles that the end user specifies should be used for the document. These
styles are selected by the end user from local style sheets and can be used to modify a docu-
ment’s default look. The styles can be changed in Microsoft Internet Explorer, for example,
within the Accessibility section of Internet Options, as shown in Figure 28-3.

� User agent styles — Styles that a user agent uses by default when no other styles are
specified for a particular element or document. These styles are usually very simple in
nature — black text on a white background, slightly larger fonts for headings, and so on.

FIGURE 28-3

Internet Explorer users can assign default styles that override the user agent’s default styles.

Each style from each source is assigned a weight. When styles conflict between the three sources,
their assigned weight is used to determine which style should apply. By default, author styles
have priority over user styles, which have priority over user agent styles.

An exception can be forced by use of the !important rule. The author or user can tag a style
with this rule, which adds extra weight to that style’s priority. To mark a style as important,
place the !important keyword after the declaration, as shown in the following example:

p { font-weight: bold !important; }

434

Chapter 28: CSS Inheritance and Cascade

In general, important styles trump non-important styles. However, in the case of two conflicting
important styles, the order of precedence (author, user) is reversed — user important styles
trump author important styles. This gives both the user and the user agent the ability to specify
their preferences (or requirements) for display — the user agent might have hardware-specific
requirements and the user might have accessibility needs.

Note
When considering style precedence, you must also consider the order in which style sheets are loaded if you
attach more than one sheet to a document or import one sheet inside another. In the following example,
styles in the hr-dept.css style sheet will trump styles in the corporate.css style sheet because the
hr-dept.css sheet is loaded last:

<link rel=stylesheet type="text/css"
href="corporate.css" title="corporate styles">

<link rel=stylesheet type="text/css"
href="hr-dept.css" title="hr dept styles">

Care should be taken to observe inheritance between the sheets. Any individual element’s properties spec-
ified in the corporate.css sheet that are not specified in the hr-dept.css sheet will be inherited and
applied to the document. �

The actual means to determine the cascade sorting order is specified by the World Wide Web
Consortium (W3C) as follows:

1. Take all definitions that apply to the element and property in question.

2. Sort the definitions by weight and origin: Author styles override user styles, which over-
ride user agent styles. For !important definitions, user styles override author styles.
All !important definitions override normal definitions. Any imported definitions are
considered to have the same origin as the style sheet that imported them.

3. Sort the definitions by specificity of selector: The more specific selectors override the more
general ones.

4. Sort by the order in which the definitions were specified: If two definitions have the same
weight, origin, and specificity, the last one specified prevails. Rules in imported style
sheets are considered before any rules in the style sheet itself.

The styles are applied according to the order resolved by this process.

Specificity
There is one other aspect to CSS conflict resolution: specificity. To understand how specificity is
used, consider the following style definitions:

div p { color: red; }
p { color: blue; }

Given the discussion thus far in the chapter, you would expect that the font in every paragraph
element, including those in div elements, would be rendered in blue. However, that’s not the

435

Part III: Controlling Presentation with CSS

case. Paragraph elements contained within div elements would have their text rendered in red.
The first definition is more specific — it specifies paragraph elements that are children of div
elements. Therefore, it carries more weight than the more generic definition.

As with cascade precedence, the W3C has a specification for calculating a definition’s specificity
value based on the selector:

1. Count the number of ID attributes in the selector and assign that number to A.

2. Count the number of other attributes and pseudo-classes in the selector and assign that
number to B.

3. Count the number of element names and pseudo-elements in the selector and assign that
number to C.

4. Concatenate the values to make one number, ABC. That number is the definition’s
specificity.

Note that pseudo-elements are not given specificity and are ignored in the preceding calculation.

For example, consider the following selectors and their resultant specificity values:

* A=0 B=0 C=0 -> specificity = 0
p A=0 B=0 C=1 -> specificity = 1
div p A=0 B=0 C=2 -> specificity = 2
ul ol+li A=0 B=0 C=3 -> specificity = 3
h1 + *[REL=up] A=0 B=1 C=1 -> specificity = 11
ul ol li.red A=0 B=1 C=3 -> specificity = 13
li.red.level A=0 B=2 C=1 -> specificity = 21
#columnhead A=1 B=0 C=0 -> specificity = 100

Note that the selector #columnhead, which refers to an element with a specific ID attribute, is
given a high specificity, whereas the wildcard selector (*) is given a low specificity, as you would
expect.

Summary
CSS can be a complex beast if documents have several style sheets or otherwise create competing
and conflicting styles. However, definite rules are in place to handle competing sheets and indi-
vidual competing styles — rules that effectively address the needs of a document’s author, the
user of a document, and the user agent displaying the document. Understanding the style sheet
cascade, style inheritance, and specificity eliminates any doubt as to how your documents will be
displayed.

436

Font Properties

IN THIS CHAPTER
Understanding Fonts

Font Types

Font Sizing

Font Styling

Line Spacing

Embedding Fonts in
a Document

As previously mentioned throughout this book, the Web began as a
vehicle for displaying very plain documents. The documents in ques-
tion were of the research variety, needing only basic font handling,

tables for data display, and the inclusion of graphics.

However, the Web has come a long way from that simple beginning. As
more entities embraced the medium, the technology became more robust
and able to handle more desktop publishing–like capabilities. Today’s Web
technologies can produce documents almost as rich in content and presenta-
tion as those produced by modern, dedicated publishing programs.

The most important characteristics are typography and layout. This chapter
covers typography — namely, fonts — and how CSS handles them.

Understanding Fonts
Fonts are stylized collections of letters and symbols, known as glyphs. Fonts
can be used to convey information — for example, specialized fonts can
provide special characters or symbols. Although fonts can be quite differ-
ent from one another, they share the same basic characteristics, as shown in
Figure 29-1.

437

Part III: Controlling Presentation with CSS

FIGURE 29-1

Font characteristics

Mean line

Height of lowercase glyph
Descension

Ascension
(height of uppercase glyph)

x-height (ex)
Baseline

These elements are defined as follows:

� Baseline — The line on which glyphs of the font sit

� Ascension — The highest point reached by most capital glyphs in the font. Note that tech-
nically the ascension is the point at which the highest glyph reaches, as some fonts have
special, ornate characters that reach higher than other, normal characters.

� Descension — The lowest position that some glyphs, such as p, g, or q, reach

� Mean line — The highest point that lowercase glyphs reach

� x-height — The height of the letter x in the font. Note that this is usually the same as the
mean line, but occasionally the two heights are different. In addition, this value exists for
all fonts, whether they contain an x or not.

Fonts are spaced vertically according to a system similar to ruled paper. Vertical font measure-
ments, such as line spacing or leading, are typically measured between the baselines of text, at
least as far as CSS is concerned. The spacing between individual glyphs is letter-spacing, and can
vary between fonts and be adjusted within a font.

CSS offers many properties to control the fonts in your documents.

Font Types
CSS supports five different font family types (see Figure 29-2). These general types can be used
to apprise a user agent of the type of font face it should use. The five families are as follows:

� Serif — Serif fonts have ornamentation on each glyph. Typically, serif fonts are used in
body text. The finishing strokes, flared or tapering ends, or serifed endings, make the lines
of characters flow and tend to be easier on the eyes.

� Sans-serif — These fonts are fairly plain, having little or no ornamentation on their
glyphs. Sans-serif fonts are typically used for headings or other large areas of emphasis.

� Cursive — Cursive fonts are quite ornate, approximating cursive writing. Such fonts
should be used only in extreme cases where the emphasis is on ornamentation, rather than
legibility.

438

Chapter 29: Font Properties

� Fantasy — Fantasy fonts, much like cursive fonts, emphasize ornamentation over legibil-
ity. Fantasy fonts come in many styles but still retain the basic shape of letters. Like cursive
fonts, fantasy fonts are generally used for logos and other ornamentation purposes where
legibility is secondary to a particular look or design.

� Monospace — Monospace fonts come in serif and sans-serif varieties but all share the
same attribute: All characters in the font have the same width. The effect is much like char-
acters on a text-based terminal or typewriter. Such fonts are generally used in code listings
and other listings approximating terminal output.

FIGURE 29-2

The five CSS-supported font types

Serif

Monospace

Sans-serif

The font-family property defines the font or fonts that should be used in the document or
specific element to which the property is attached. The property has the following format:

font-family: [[<family-name> | <generic-family>][,
<family-name> | <generic-family>]*] ;

Essentially, the property defines one or more font families that should be used, via an actual
font name or a generic name. For example, to select a sans-serif font, you might use a definition
similar to the following:

font-family: Verdana, Arial, Helvetica, Sans-Serif;

Tip
If the font family names contain any spaces they should be enclosed in quotes. �

Note that this definition uses three specific family names (Verdana, Arial, Helvetica) and a
generic family name (Sans-Serif) for versatility. The definition instructs the user agent that
the sans-serif font Verdana should be used. If it is unavailable, the Arial font (popular on
Windows-based platforms) should be used. If neither of those fonts is available, the Helvetica
font should be used (popular on Macintosh-based platforms and other PostScript-based systems).

439

Part III: Controlling Presentation with CSS

If none of the previously specified fonts are available, the user agent should use its default
sans-serif font.

Tip
The preceding font-family definition is a good, universal sans-serif font specification that can be used for
any platform. Likewise, the following definition can be used for a universal serif font specification:

font-family: Palatino, "Times New Roman", "Times Roman", Serif; �

The font-family definition doesn’t control the font variant (bold, italic, and so on), size, letter
spacing, and so forth. It does specify the font that should be used as the basis for fonts in the
element where the font-family definition is placed. Individual font variant tags and elements
(, <i>, and so on) determine the variant of the font used when those variant elements are
encountered by the browser. If the base font cannot be used for the variant, then the browser
substitutes another font in the current font’s stead.

Style definitions to set up a document in traditional serif font body text and bold sans-serif font
headings would resemble the following:

body { font-family: Palatino, "Times New Roman", "Times Roman", Serif; }
h1, h2, h3, h4, h5, h6 {
font-family: Verdana, Arial, Helvetica, Sans-Serif;
font-weight: bold; }

Font Sizing
Two properties can be used to control font sizing: font-size and font-size-adjust. Both
properties can adjust a font absolutely or relative to the current font size. Possible value metrics
are shown in Table 29-1.

The font-size property is used to set the actual size of the current font. For example, you
could set an absolute font size of 12pt with the following property:

font-size: 12pt;

Likewise, you can adjust the font size relative to the current font size. For example, to set the
font size to double its current size, you could use a property similar to this:

font-size: 200%;

440

Chapter 29: Font Properties

TABLE 29-1

Font Size Value Metrics

Metric Description

Absolute size
keywords

Keywords corresponding to user agent absolute font sizes. These keywords
include xx-small, x-small, small, medium, large, x-large, and
xx-large.

Relative size
keywords

Keywords corresponding to user agent relative font sizes. These keywords
include larger and smaller.

Absolute size An absolute value corresponding to a font size. Negative values are not
supported, but supported values include point sizes (e.g., 12pt) and,
optionally (although not as exact), other size values such as pixels
(e.g., 10px).

Percentage size A percentage corresponding to a percentage of the current font. These
values can be expressed in actual percentages (e.g., 150%) or other relative
metrics such as ems (e.g., 1.5em).

The font-size-adjust property adjusts the aspect of the current font. The aspect of a font is
the ratio between its size and x-height values. Tweaking this aspect can improve the legibility of
some fonts at smaller sizes, but usually the aspect should not be changed.

Font Styling
Four properties can be used to affect font styling: font-style, font-variant, font-weight,
and font-stretch. The syntax of each is shown in the following listing:

font-style: normal | italic | oblique;
font-variant: normal | small-caps;
font-weight: normal | bold | bolder | lighter | 100 | 200 |
300 | 400 | 500 | 600 | 700 | 800 | 900;

font-stretch: normal | wider | narrower | ultra-condensed |
extra-condensed | condensed | semi-condensed | semi-expanded |
expanded | extra-expanded | ultra-expanded;

The font-style property controls the italic style of the text, whereas the font-weight
property controls the bold style of the text. The other two properties control other display
attributes of the font; font-variant controls whether the font is displayed in small caps, and
font-stretch does exactly what its name suggests — stretches the font by adjusting its letter
spacing.

The various values for the font-weight property can be broken down as follows:

� 100-900 — The font’s darkness, where 100 is the lightest and 900 the darkest. Various
numbers correspond to other values, as described in the following bulleted points.

� lighter — Specifies the next lightest setting for a font unless the font weight is already
near the weight value corresponding to 100, in which case it stays at 100.

441

Part III: Controlling Presentation with CSS

� normal — The normal darkness for the current font; it corresponds to weight 400.
� bold — The darkness corresponding to the font’s bold variety; it corresponds to

weight 700.
� bolder — Specifies the next darkest setting for a font unless the font weight is already

near the weight value corresponding to 900, in which case it stays at 900.

The font-style and font-weight properties can be used to control a font’s bold and italic
properties without coding document text directly with italic (i) and bold (b) elements. For
example, you might define a bold variety of a style using definitions similar to the following:

p { font-family: Palatino, "Times New Roman", "Times Roman", Serif; }
p.bold { font-weight: bold; }

The bold class of the paragraph element inherits the base font from its parent, the paragraph
element. The font-weight property in the bold class of the paragraph element simply makes
such styled elements render as a bold variety of the base font.

Line Spacing
The line-height property controls the line height of text. The line height is the distance
between the baseline of two vertically stacked lines of text. This value is also known as leading.

Note
Refer to Figure 29-1 for an illustration of the baseline of a font. �

The line-height property has the following syntax:

line-height: normal | <number> | <length> | <percentage>

This property sets the size of the surrounding box of the element for which it is applied, affecting
the vertical distance between text lines. The normal value sets the line height to the default size
for the current font. Specifying a number (for example, 2) causes the current line height to be
multiplied by the number specified. Absolute lengths (for example, 1.2em) cause the line height
to be set to that absolute value. A percentage value is handled like a number value; the percent-
age is applied to the current font’s value. Note that this property does not change the size of the
font, only the distance between the lines of text.

For example, the following two definitions both set a class up to double-space text:

p.doublespace { line-height: 2; }
p.doublespace { line-height: 200%; }

Embedding Fonts in a Document
Two technologies exist to enable you to embed fonts in your documents, though support
for either is almost non-existent. Embedding fonts enables your readers to download the
specific font to their local machine so your documents use the exact font you designate.

442

Chapter 29: Font Properties

Unfortunately, as with most progressive Web technologies, the market is split into distinct
factions:

� OpenType is a standard developed by Microsoft and Adobe Systems. OpenType fonts,
thanks to the creators of the standard, share similar traits with PostScript and TrueType
fonts used in other publishing applications. Currently, only Internet Explorer supports
OpenType.

� TrueDoc is a standard developed by BitStream, a popular font manufacturer. Currently,
only Netscape-based browsers natively support TrueDoc fonts, but BitStream does make
an ActiveX control for support on Internet Explorer.

Note
Even when a font is available for low cost or without cost, that doesn’t mean you can reuse it, especially in
a commercial application. When acquiring fonts for use on the Web, make sure that you have the appropri-
ate rights for the use you intend. �

To embed OpenType fonts in your document, you use an @font-face definition in the style
section of your document. The @font-face definition has the following syntax:

@font-face { font-definition }

The font-definition contains information about the font, including stylistic information and
the path to the font file. This information is contained in typical property: value form, simi-
lar to the following:

@font-face {
font-family: Dax;
font-weight: bold;
src: url(’http://www.example.com/fontdir/Dax.pfr’);

}

To embed TrueDoc fonts in your document, you use the link tag (<link>) in a format similar
to the following:

<link rel="fontdef" src="http://www.example.com/fontdir/Amelia.pfr" />

To use TrueDoc fonts in Internet Explorer you also have to include the TrueDoc ActiveX control
using code like the following:

<script language="JavaScript" src="http://www.truedoc.com/activex/tdserver.js">
</script>

Tip
Several fonts are available for use from the TrueDoc website: www.truedoc.com. �

Embedding fonts is not recommended for several reasons:

� The two standards make supporting embedded fonts difficult.

� Embedded fonts increase the download time of your document and increase the overall
load on the user agent.

443

Part III: Controlling Presentation with CSS

� Embedded fonts decrease the flexibility of your documents, limiting how user agents can
adjust the display of text.

Instead of using embedded fonts, I recommend that you stick to CSS definitions for specifying
font attributes. If you know your audience and their platform and you need your document to
look exactly as you intend, investigate embedded fonts.

Summary
This chapter is the first of the topical coverage chapters in this CSS part. In this chapter, you
learned about fonts — how to present them, control them, and even embed them, if you so
choose. The following several chapters continue to present CSS subject matter in concrete,
related chunks.

444

Text Formatting

IN THIS CHAPTER
Aligning Text

Indenting Text

Controlling White Space
Within Text

Controlling Letter and Word
Spacing

Specifying Capitalization

Using Text Decorations

Autogenerated Text

Using CSS Table Properties

Controlling Table Attributes

Table Layout

Aligning and Positioning
Captions

The Web was initially text-based, and text is still a major part of
online content today. CSS offers many styles for text formatting, from
simple justification to autogenerated text. Although CSS includes

options for page layout without tables, it also includes styles for formatting
HTML tables. This chapter covers the basics of text and table formatting
with CSS.

Aligning Text
Multiple properties in CSS control the formatting of text. Several properties
enable you to align text horizontally and vertically — aligning with other
pieces of text or other elements around them.

Controlling horizontal alignment
You can use the text-align property to align blocks of text in four basic
ways: left, right, center, or full. The following code and the output displayed
in Figure 30-1 show the effect of the justification settings:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Text Justification</title>
<style type="text/css">
p.left { text-align: left;}
p.right { text-align: right;}
p.center { text-align: center;}
p.full { text-align: justify;}

</style>
</head>
<body>

445

Part III: Controlling Presentation with CSS

<div style="margin: 50px">
<h3>Left Justified (default)</h3>
<p class="left">The Oasis boasts three saunas, two whirlpools, and

a full-size swimming pool for the use of our clients. Each of these
facilities has a small usage fee, but many services include the use
of one or more of these facilities--be sure to ask your service
consultant about our many combination packages.</p>
<h3>Right Justified</h3>
<p class="right">The Oasis boasts three saunas, two whirlpools, and

a full-size swimming pool for the use of our clients. Each of these
facilities has a small usage fee, but many services include the use
of one or more of these facilities--be sure to ask your service
consultant about our many combination packages.</p>
<h3>Center Justified</h3>
<p class="center">The Oasis boasts three saunas, two whirlpools, and

a full-size swimming pool for the use of our clients. Each of these
facilities has a small usage fee, but many services include the use
of one or more of these facilities--be sure to ask your service
consultant about our many combination packages.</p>
<h3>Fully Justified</h3>
<p class="full">The Oasis boasts three saunas, two whirlpools, and

a full-size swimming pool for the use of our clients. Each of these
facilities has a small usage fee, but many services include the use
of one or more of these facilities--be sure to ask your service
consultant about our many combination packages.</p>
</div>
</body>
</html>

Note that the default justification is left; that is, the lines in the block of text are aligned against
the left margin, and the lines wrap where convenient on the right, leaving a jagged right margin.

In addition to the four standard alignment options, you can also use text-align to align
columnar data in tables to a specific character. For example, the following code results in the
data in the Balance column being aligned on the decimal place:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Table Column Justification</title>
<style type="text/css">
td.dec { text-align: ".";}

</style>
</head>
<body>
<table border="1">
<tr>
<th>Customer</th>
<th>Balance</th>

</tr>

446

Chapter 30: Text Formatting

<tr>
<td>Wendy Weatherbee</td>
<td class="dec">$50.95</td>

</tr>
<tr>

<td>Katy Keene</td>
<td class="dec">$284.99</td>

</tr>
<tr>

<td>Elizabeth Cooper</td>
<td class="dec">$90.99</td>

</tr>
<tr>

<td>Ronnie Lodge</td>
<td class="dec">$525.99</td>

</tr>
<tr>

<td>Nancy Woods</td>
<td class="dec">$410.99</td>

</tr>
</table>

</body>
</html>

FIGURE 30-1

The four types of text justification

447

Part III: Controlling Presentation with CSS

Note
Columnar alignment using the text-align property is not well supported in current user agents. You
should test your target agents to ensure compliance before using text-align this way. �

Controlling vertical alignment
In addition to aligning text horizontally, CSS also enables you to align text vertically via the
vertical-align property. The vertical-align property supports the following values:

� baseline — This is the default vertical alignment; text uses its baseline to align to other
objects around it.

� sub — This value causes the text to descend to the level appropriate for subscripted text
based on its parent’s font size and line height. (This value has no effect on the size of the
text, only its position.)

� super — This value causes the text to ascend to the level appropriate for superscripted
text based on its parent’s font size and line height. (This value has no effect on the size of
the text, only its position.)

� top — This value causes the top of the element’s bounding box to be aligned with the top
of the element’s parent bounding box.

� text-top — This value causes the top of the element’s bounding box to be aligned with
the top of the element’s parent text.

� middle — This value causes the text to be aligned using the middle of the text and the
midline of objects around it.

� bottom — This value causes the bottom of the element’s bounding box to be aligned with
the bottom of the element’s parent bounding box.

� text-bottom — This value causes the bottom of the element’s bounding box to be
aligned with the bottom of the element’s parent text.

� length — This value causes the element to ascend (positive value) or descend (negative
value) by the value specified.

� percentage — This value causes the element to ascend (positive value) or descend (neg-
ative value) by the percentage specified. The percentage is applied to the element’s line
height.

The following code and the output displayed in Figure 30-2 show the effect of each value:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Vertical Text Alignment</title>
<style type="text/css">
.baseline { vertical-align: baseline;}

448

Chapter 30: Text Formatting

.sub { vertical-align: sub;}

.super { vertical-align: super;}

.top { vertical-align: top;}

.text-top { vertical-align: text-top;}

.middle { vertical-align: middle;}

.bottom { vertical-align: bottom;}

.text-bottom { vertical-align: text-bottom;}

.length { vertical-align: .5em;}

.percentage { vertical-align: -50%;}
/* All elements get a border */
body * { border: 1px solid black;}
/* Parent (paragraph) font larger for visibility
p { font=size: 150%;}
/* Reduce the spans’ font by 50% */
p * { font-size: 50%;}

</style>
</head>
<body>
<p>Baseline: Parent

aligned text text</p>
<p>Sub: Parent

aligned text text</p>
<p>Super: Parent

aligned text text</p>
<p>Top: Parent

aligned text text</p>
<p>Text-top: Parent

aligned text text</p>
<p>Middle: Parent

aligned text text</p>
<p>Bottom: Parent

aligned text text</p>
<p>Text-bottom: Parent

aligned text text</p>
<p>Length: Parent

aligned text text</p>
<p>Percentage: Parent

aligned text text</p>
</body>
</html>

Of course, text isn’t the only element that can be affected by the vertical-align property.
Figure 30-3 shows an image next to text. The image has the vertical-align property set to
middle. Note how the midpoint of the image is aligned to the text beside it.

449

Part III: Controlling Presentation with CSS

FIGURE 30-2

The effect of various vertical-align settings. (Borders were added to the text to help contrast the
alignment.)

Indenting Text
You can use the text-indent property to indent the first line of an element. For example,
to indent the first line of a paragraph of text by 25 pixels, you could use code similar to the
following:

<p style="text-indent: 25px;">The Oasis boasts three saunas, two
whirlpools, and a full-size swimming pool for the use of our clients.
Each of these facilities has a small usage fee, but many services
include the use of one or more of these facilities--be sure to ask
your service consultant about our many combination packages.</p>

Note that the text-indent property indents only the first line of the element. If you want to
indent the entire element, use the appropriate margin properties instead.

Cross-Ref
See Chapter 32 for more information about the margin properties. �

450

Chapter 30: Text Formatting

FIGURE 30-3

The vertical-align property can be used to vertically align most elements.

You can specify the indent as a specific value (1in, 25px, and so on), or as a percentage of the
containing element’s width. When specifying the indent as a percentage, the width of the con-
taining element(s) will play a prominent role in the actual size of the indentation. Therefore,
when you want a uniform indent, use a specific value.

Controlling White Space Within Text
White space is typically not a concern in HTML documents. However, at times you’ll want better
control over how white space is interpreted and how certain elements line up to their siblings.

Clearing floating objects
The float property can cause elements to ignore the normal flow of the document and ‘‘float’’
against a particular margin. For example, consider the following code, whose resulting output is
shown in Figure 30-4:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>

451

Part III: Controlling Presentation with CSS

<head>
<title>Floating Image</title>

</head>
<body>
<p>Floating Image

The Oasis boasts three saunas, two whirlpools, and a full-size

swimming pool for the use of our clients. Each of these facilities
has a small usage fee, but many services include the use of one or
more of these facilities--be sure to ask your service consultant
about our many combination packages.</p>

<p>Non-Floating Image

The Oasis boasts three saunas, two whirlpools, and a full-size

swimming pool for the use of our clients. Each of these facilities
has a small usage fee, but many services include the use of one or
more of these facilities--be sure to ask your service consultant
about our many combination packages.</p>
</body>
</html>

FIGURE 30-4

Floating images can add a dynamic feel to your document.

452

Chapter 30: Text Formatting

Although floating images can add an attractive, dynamic air to your documents, their place-
ment is not always predictable. As such, it’s helpful to be able to indicate that specific elements
should not allow floating elements next to them. One good example of when you would
want to disallow floating elements is next to headings. Consider the document shown in
Figure 30-5.

FIGURE 30-5

Floating images can sometimes get in the way of positioning other elements, such as headings.

Using the clear property, you can ensure that one side or both sides of an element remain free
of floating elements. You can specify left, right, both, or none (the default) for values of
the clear property. Note that the clear property doesn’t affect the floating element. Instead,
it forces the element containing the clear property to avoid the floating element(s) by placing
itself after the floating element(s).

For example, adding the following style to the document shown in Figure 30-5 ensures that
both sides of all heading levels are clear of floating elements. This results in the display shown in
Figure 30-6, with the heading being placed after the floating figure.

h1,h2,h3,h4,h5,h6 { clear: both;}

453

Part III: Controlling Presentation with CSS

FIGURE 30-6

Use the clear property to force an element to start past the floating element’s bounding box (and
before any additional floating elements begin).

The white-space property
User agents typically ignore extraneous white space in documents. However, at times you want
the white space to be interpreted literally, without having to use a <pre> tag to do so. Enter the
white-space property.

The white-space property can be set to the following values:

� normal
� pre
� nowrap

The default setting is normal — that is, ignore extraneous white space.

If the property is set to pre, text will be rendered as though it were enclosed in a <pre> tag.
Using pre does not affect the font or other formatting of the element; it just causes white space

454

Chapter 30: Text Formatting

to be rendered verbatim. For example, the following text will be spaced exactly as shown in the
following code:

<p style="white-space: pre;">This paragraph’s words
are irregularly spaced, but will be rendered as

such
by the user agent.</p>

Setting the white-space property to nowrap causes the element not to wrap at the right mar-
gin of the user agent. Instead, it continues to the right until the next explicit line break. User
agents should add horizontal scroll bars to enable users to fully view the content.

Note
Text contained in a pre element is displayed using a monospace font. If you preserve white space by using
the white-space property with a value of pre, your document will generally be rendered in a propor-
tional font. �

Controlling Letter and Word Spacing
The letter-spacing and word-spacing properties can be used to control the letter and
word spacing in an element, respectively. Both elements take an explicit or relative value
to adjust the spacing — positive values add more space, negative values remove space. For
example, consider the following code, whose output is shown in Figure 30-7:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Letter Spacing</title>
<style type="text/css">

.normal { letter-spacing: normal; }

.tight { letter-spacing: -.2em; }

.loose { letter-spacing: .2em; }
</style>

</head>
<body>
<h3>Normal</h3>
<p class="normal"> The Oasis boasts three saunas, two whirlpools,

and a full-size swimming pool for the use of our clients. Each of
these facilities has a small usage fee, but many services include
the use of one or more of these facilities--be sure to ask your
service consultant about our many combination packages.</p>

<h3>Tight</h3>
<p class="tight"> The Oasis boasts three saunas, two whirlpools,

and a full-size swimming pool for the use of our clients. Each of
these facilities has a small usage fee, but many services include

455

Part III: Controlling Presentation with CSS

the use of one or more of these facilities--be sure to ask your
service consultant about our many combination packages.</p>

<h3>Loose</h3>
<p class="loose"> The Oasis boasts three saunas, two whirlpools,

and a full-size swimming pool for the use of our clients. Each of
these facilities has a small usage fee, but many services include
the use of one or more of these facilities--be sure to ask your
service consultant about our many combination packages.</p>
</body>
</html>

FIGURE 30-7

The letter-spacing property does exactly what its name indicates; it adjusts the spacing between
letters.

Note that the user agent can govern the minimum amount of letter spacing allowed. Setting the
letter spacing to too small a value can have unpredictable results.

456

Chapter 30: Text Formatting

The word-spacing property behaves exactly like the letter-spacing property, except that
it controls the spacing between words instead of letters. Like letter-spacing, using a positive
value with word-spacing results in more space between words, and using a negative value
results in less space.

Specifying Capitalization
You can also use styles to control the capitalization, or case, of text. The text-transform
property can be set to four different values, as shown in the following code and Figure 30-8:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Letter Spacing</title>
<style type="text/css">

.normal { text-transform: none;}

.initcaps { text-transform: capitalize;}

.upper { text-transform: uppercase;}

.lower { text-transform: lowercase;}
</style>

</head>
<body>
<h3>Normal</h3>
<p class="normal"> Many of the OASIS services include the use of

one or more of our premium facilities. Be sure to ask your service
consultant about our many combination packages and special seasonal
discounts.</p>

<h3>Initial Caps</h3>
<p class="initcaps"> Many of the OASIS services include the use of

one or more of our premium facilities. Be sure to ask your service
consultant about our many combination packages and special seasonal
discounts.</p>

<h3>Uppercase</h3>
<p class="upper"> Many of the OASIS services include the use of

one or more of our premium facilities. Be sure to ask your service
consultant about our many combination packages and special seasonal
discounts.</p>

<h3>Lowercase</h3>
<p class="lower"> Many of the OASIS services include the use of

one or more of our premium facilities. Be sure to ask your service
consultant about our many combination packages and special seasonal
discounts.</p>
</body>
</html>

457

Part III: Controlling Presentation with CSS

FIGURE 30-8

The text-transform property enables you to influence the capitalization of elements.

There are some rules as to what text-transform will and won’t affect. For example, the
capitalize value ensures that each word starts with a capital letter, but it doesn’t change the
case of the rest of the word. Likewise, setting the property to normal will not change the case
of the element (for example, ‘‘OASIS’’ remains in all caps).

Using Text Decorations
You can add several different effects to text through CSS. Most are accomplished via the
text-decoration and text-shadow properties.

458

Chapter 30: Text Formatting

The text-decoration property enables you to add the following attributes to text:

� underline
� overline (line above text)
� line-through
� blink

As with most properties, the values are straightforward:

<p style="text-decoration: none;">No Decoration</p>
<p style="text-decoration: underline;">Underlined</p>
<p style="text-decoration: overline;">Overlined</p>
<p style="text-decoration: line-through;">Line Through</p>
<p style="text-decoration: blink;">Blink</p>

The text-shadow property is a bit more complex but can add stunning drop shadow effects to
text. The text-shadow property has the following format:

text-shadow: "[color] horizontal-distance
vertical-distance [blur]"

The property takes two values to offset the shadow: one horizontal, the other vertical. Positive
values set the shadow down and to the right. Negative values set the shadow up and to the left.
Using combinations of negative and positive settings, you can move the shadow to any location
relative to the text it affects.

The optional color value sets the color of the shadow. The blur value specifies the blur
radius — or the width of the effect — for the shadow. The exact algorithm for computing the
blur radius is not specified by the CSS specification, so your experience may vary with this value.

The text-shadow property enables multiple shadow definitions for multiple shadows. Simply
separate the definitions with commas.

The following code creates a drop shadow on all h1 headings. The shadow is set to display above
and to the right of the text in a gray color:

h1 { text-shadow: #666666 2em -2em;}

The following definition provides the same shadow as the previous example but adds another,
lighter gray shadow directly below the text:

h1 { text-shadow: #666666 2em -2em, #AAAAAA 0em 2em;}

Unfortunately, not many user agents support text-shadow. If you want such an effect, you
might be better off creating it with a graphic instead of text.

459

Part III: Controlling Presentation with CSS

Autogenerated Text
CSS has a few mechanisms for autogenerating text. Although this doesn’t fit in well with the
presentation-only function of CSS, it can be useful to have some constructs to automatically
generate text for your documents. There are properties and elements to automatically supply
quotation marks, provide arbitrary text before or after an element, or autogenerate a counter.

Cross-Ref
Although these properties bear mention here, they are covered in depth with the other pseudo-elements and
generated content in Chapter 35. �

Using CSS Table Properties
Because the <table> tag attributes, such as border, rules, cellpadding, and cellspacing,
have not been deprecated, you might be tempted to use them instead of CSS properties when
defining your tables. You should resist that temptation.

Using styles for tables provides the same advantages as using styles for any other
element — consistency, flexibility, and the ability to easily change the format later.

For example, consider the following table tag:

<table border="1" width="200px" cellpadding="3px"
cellspacing="5px">

Now suppose you had four tables using this same beginning tag in your document, and you had
four other documents just like it. What if you decided to decrease the width of the table and
increase the padding within the tables? You would have to edit each table manually, potentially
16 individual tables between four documents.

If the table formatting were contained in styles at the top of the documents, you would have to
make only four changes, one change in each document. Better yet, if the formatting were con-
tained in a separate, external style sheet, you would have to make only one change.

Note
The CSS border properties are used to control table borders, and the padding and margin properties are
used to affect the spacing of cells and the padding of their contents. �

Controlling Table Attributes
You can use CSS properties to control the formatting of tables, but note that some of the prop-
erty names do not match up with the tag attributes. For example, there are no cellspacing

460

Chapter 30: Text Formatting

or cellpadding CSS properties. The border-spacing and padding CSS properties fill those
roles, respectively.

Table 30-1 shows how CSS properties match table tag attributes.

Each of the various properties is covered in the following sections.

TABLE 30-1

CSS Properties for Table Attributes

Purpose Table Attribute CSS Property(ies)

Borders border border properties

Spacing inside cell cellpadding padding properties

Spacing between cells cellspacing border-spacing property

Width of table width width and table-layout properties

Table framing frame border properties

Alignment align, valign text-align, vertical-align properties

Table borders
You can use the border properties to control the border of a table and its sub-elements, just
like any other element. For example, the following definition causes all tables and their elements
to have single, solid, 1-point borders around them (as shown in Figure 30-9):

table, table * { border: 1pt solid black;}

The preceding example specifies all tables and all table descendants (table, table *) to ensure
that each cell, as well as the entire table, has a border. If you wanted only the cells or only the
table to have borders, you could use the following definitions:

/* Only table cells have borders */
table * { border: 1pt solid black;}
or

/* Only table body has borders */
table { border: 1pt solid black;}

The results of these two definitions are shown in Figure 30-10.

461

Part III: Controlling Presentation with CSS

FIGURE 30-9

A table using CSS properties to define its borders

You can also combine border styles. For example, the following definitions create a table with
borders similar to using the table element’s border attribute. The result of this definition is
shown in Figure 30-11.

table { border: outset 5pt;}
td, th { border: inset 5pt;}

Table border spacing
To increase the space around table borders, use the border-spacing and padding CSS
properties. The border-spacing property adjusts the space between table cells much like the

462

Chapter 30: Text Formatting

<table> tag’s cellspacing attribute. The padding property adjusts the space between a table
cell’s contents and the cell’s border.

FIGURE 30-10

Tables using selective bordering

The border-spacing property has the following format:

border-spacing: horizontal_spacing vertical_spacing;

Note that you can choose to include only one value, in which case the spacing is applied to both
the horizontal and vertical border spacing.

For example, Figure 30-12 shows the same table shown in Figure 30-11, but with the following
border-spacing definition:

Table { border-spacing: 5px 15px;}

463

Part III: Controlling Presentation with CSS

Note
The border-spacing property works only with tables that have their border-collapse property set to
separate. Also, some user agents, such as Internet Explorer, disregard the border-spacing property. �

FIGURE 30-11

You can combine border styles to create custom table formats.

Collapsing borders
Sometimes you will want to remove the spacing between borders in a table, creating gridlines
instead of distinct individual borders. To do so, use the border-collapse property. This prop-
erty takes either the value of separate (default) or collapse. If you specify collapse, the
cells merge their borders with neighboring cells (or the table) into one line. Whichever cell has
the most visually distinctive border determines the collapsed border’s look.

For example, consider the two tables in Figure 30-13, shown with their table definitions directly
above them.

464

Chapter 30: Text Formatting

Notice how the borders between the table headers (th) and normal cells inherited the inset bor-
der, while the rest of the borders remained solid. This is because the border around the table
headers was more visually distinctive and won the conflict between the borders styles being
collapsed.

FIGURE 30-12

Different horizontal and vertical border-spacing can help distinguish data in columns or rows.

Borders on empty cells
Typically, the user agent does not render empty cells, but you can use the empty-cells
CSS property to control whether the agent should or should not show empty cells. The
empty-cells property takes one of two values: show or hide (default).

Figure 30-14 shows the following table with various settings of the empty-cells property:

<table>
<tr><th>Heading</th><th>Heading</th><th>Heading</th></tr>

465

Part III: Controlling Presentation with CSS

<tr><td>X</td><td></td><td>X</td></tr>
<tr><td></td><td>X</td><td></td></tr>
<tr><td>X</td><td>X</td><td>X</td></tr>

</table>

FIGURE 30-13

Collapsing table borders turns individual borders into gridlines between cells.

Note
Some user agents, such as Internet Explorer, disregard the empty-cells property. In such cases, the only
recourse is to place a nonbreaking space () or other non-printable character in each empty cell,
making the cell not empty but containing no visible contents. �

466

Chapter 30: Text Formatting

FIGURE 30-14

The empty-cells property controls whether the user agent displays empty cells or not.

Table Layout
The table-layout property determines how a user agent sizes a table. This property takes one
of two values: auto or fixed. If this property is set to auto, the user agent automatically deter-
mines the table’s width primarily from the contents of the table’s cells. If this property is set to
fixed, the user agent determines the table’s width primarily from the width values defined in
the other properties and attributes affecting the table.

467

Part III: Controlling Presentation with CSS

Aligning and Positioning Captions
CSS can also help control the positioning of table caption elements. The positioning of the
caption is controlled by the caption-side property. This property has the following format:

caption-side: top | bottom | left | right;

The property’s value determines where the caption is positioned in relationship to the table.
To align the caption in its position, you can use typical text alignment properties such as
text-align and vertical-align.

For example, the following code places the table’s caption to the right of the table, centered
vertically and horizontally, as shown in Figure 30-15:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Table Caption Positioning</title>
<style type="text/css">
table { margin-right: 200px;}
table, table * { border: 1pt solid black;

caption-side: right;}
caption { margin-left: 10px;

vertical-align: middle;
text-align: center;}

</style>
</head>
<body>
<table>
<tr>
<th>Cust #</th>
<th>Customer Name</th>
<th>Balance</th>

</tr>
<tr>
<td>00032567</td>
<td>Wendy Weatherbee</td>
<td>$50.95</td>

</tr>
<tr>
<td>00032433</td>
<td>Katy Keene</td>
<td>$284.99</td>

</tr>
<tr>
<td>00032643</td>
<td>Elizabeth Cooper</td>
<td>$90.99</td>

468

Chapter 30: Text Formatting

</tr>
<tr>

<td>00032001</td>
<td>Ronnie Lodge</td>
<td>$525.99</td>

</tr>
<tr>

<td>00032803</td>
<td>Nancy Woods</td>
<td>$410.99</td>

</tr>
<caption>Daily Balance for
07/20/07</caption>
</table>

</body>
</html>

FIGURE 30-15

Using CSS you can position the caption of a table, in this case to the bottom of the table.

Note
This property does not currently work in Internet Explorer. �

469

Part III: Controlling Presentation with CSS

Note that the table’s caption is positioned inside the table’s margin. By increasing the table’s
margin, you allow more text per line of the caption. You can also explicitly set the width of the
caption using the width property, which increases the table’s margins accordingly.

Summary
This chapter covered CSS properties used to format tables and text. You learned how to affect
basic text formatting such as aligning and indenting, as well as how to control spacing of various
textual entities. You also learned how to use CSS to effectively format HTML tables, bringing
even more versatility to an already powerful formatting tool.

The rest of the chapters in this part of the book continue to cover CSS in a topical manner: lists
(Chapter 31), box elements (Chapter 32), and so on. The latter sections of this part cover topics
such as page layout (Chapter 34) and using CSS to define a document for printing (Chapter 37).

470

CSS Lists

IN THIS CHAPTER
An Overview of Lists

CSS Lists — Any Element
Will Do

List Style Type

Positioning of Markers

Using Images as List Markers

L ists are one of the most versatile textual constructs in HTML. Many
HTML authors rely on them to render text in a variety of ways — not
just text in list form. Several CSS properties modify lists and you can

take full advantage of those properties. You can change the list type or the
position of the elements, and specify images to use instead of bullets. This
chapter covers the CSS list-related properties.

Tip
HTML lists have been pressed into service for a variety of formatting and use
functions online. The Max Design site (http://css.maxdesign.com.au/
index.htm) contains many examples of lists serving other purposes. �

An Overview of Lists
There are two types of lists in standard HTML: ordered and unordered.
Ordered lists have each of their elements numbered and are generally used
for steps that must follow a specific order. Unordered lists are typically a
list of related items that do not need to be in a particular order (commonly
formatted as bulleted lists).

Cross-Ref
HTML formatting of lists is covered in Chapter 7. �

Ordered lists are enclosed in the ordered list tag, . Unordered lists are
enclosed in the unordered list tag, . A list item tag () encapsulates
each item in either list. The following code shows short examples of each
type of list, and Figure 31-1 shows the output of this code:

An ordered list
Step 1
Step 2

471

Part III: Controlling Presentation with CSS

Step 3

An unordered list
Item 1
Item 2
Item 3

FIGURE 31-1

The two types of lists, ordered (numbered) and unordered (bulleted)

CSS Lists — Any Element Will Do
An important distinction of CSS lists is that you don’t need to use the standard list element tag
() for list items. CSS uses the list-item value of the display property, which, in effect,
makes any inline element a list item. The li element is a list item by default.

472

Chapter 31: CSS Lists

Tip
There is a list style shortcut property that you can use to set list properties with a single property assign-
ment. Use the list-style property to define the other list properties — style type, style position, and
style image — as follows:

list-style: <list-style-type> <list-style-position>
<list-style-image> �

For example, to create a new class that you can use to create a list item from almost any element,
you can use the following definition:

.item { display: list-item;}

Thereafter, you can use that class to define elements as list items:

<p class="item">This is now a list item</p>

As you read through the rest of this section, keep in mind that list properties can apply to any
element defined as a list-item.

Note
Any elements preceding list items, such as bullets or numbers, are known as markers. �

List Style Type
The list-style-type property sets the type of the list and, therefore, what marker is used by
default with each item within the list — bullet, number, Roman numeral, and so on.

The list-style-type property can have the following values:

� disc
� circle
� square
� decimal
� decimal-leading-zero
� lower-roman
� upper-roman
� lower-greek
� lower-alpha
� lower-latin
� upper-alpha
� upper-latin

473

Part III: Controlling Presentation with CSS

� hebrew
� armenian
� georgian
� cjk-ideographic
� hiragana
� katakana
� hiragana-iroha
� katakana-iroha
� none

The values are all fairly mnemonic to the markers they generate; setting the style provides a list
with the appropriate item marker. For example, consider this code and the output shown in
Figure 31-2:

<ol style="list-style-type:lower-roman;">
A Roman Numeral List
Step 1
Step 2
Step 3

FIGURE 31-2

Roman numeral list markers

474

Chapter 31: CSS Lists

You can use the none value to suppress markers for individual items. However, this does not
change the sequential generation of markers; the markers for that item in the sequence are
just not displayed. For example, consider the following revised code and the output shown in
Figure 31-3:

<ol style="list-style-type:lower-roman;">
A Roman Numeral List
Step 1
<li style="list-style-type:none;">Step 2
Step 3

FIGURE 31-3

Using the none value for list markers

Note that the third item still has a marker of iii, despite suppressing the marker on the second
item. Changing marker types in the middle of the list has a similar effect — the marker type may
change, but its output will still reflect its proper sequence within the list.

Positioning of Markers
You can use the list-style-position property to change the position of the marker in rela-
tion to the list item(s). The valid values for this property are inside or outside. The outside

475

Part III: Controlling Presentation with CSS

value provides the more typical list style, whereby the marker is offset from the list item and
the item’s text is indented. The inside value sets the list to a more compact style, whereby the
marker is indented with the first line of the item. Figure 31-4 shows an example of both posi-
tioning types.

FIGURE 31-4

Markers can be positioned either outside or inside the list element’s margin.

Of course, additional positioning and formatting styles can further change the position of the
list item, but the position of the marker relative to the paragraph will be governed by the
list-style-position property setting.

Using Images as List Markers
Using the list-style-image property, you can also specify an image to use as a marker.
When this property’s value is set, an image is used instead of the marker specified by the
list-style-type property, even if the list-style-property value is set subsequently to
the list-style-image value. The image to be used is specified via the url function. For

476

Chapter 31: CSS Lists

example, the following code references sight_bullet.jpg and burst_bullet.jpg as images
to use in the list, where both images reside in the images directory on the server:

<li style="list-style-image: url(’images/sight_bullet.jpg’)">
Look for the gunsight icon which shows games we have our sights
on!
<li style="list-style-image: url(’images/burst_bullet.jpg’)">
Look for the burst icon which shows games we feel are bursting
onto the scene.

The output is shown in Figure 31-5.

FIGURE 31-5

You can use images as list markers, such as the sight and burst shown here.

Note that you can use any URL-accessible image with the list-style-image. However, it is
important to use images sized appropriately for your list.

477

Part III: Controlling Presentation with CSS

Summary
This chapter demonstrated how you can use CSS to format HTML lists — formatting list ele-
ments and choosing or providing markers. Using the information in this chapter, you should be
able to format a list to suit your particular needs. In the next few chapters, you’ll learn how to
use CSS to manipulate an element’s box model, use colors for various design purposes, and use
some of the more flexible, but esoteric CSS elements.

478

Padding, Margins,
and Borders

IN THIS CHAPTER
The CSS Box Formatting Model

Element Padding

Element Borders

Element Margins

Dynamic Outlines

A ll elements in an HTML document can be formatted in a variety of
ways using CSS. Previous chapters in this part of the book covered
the CSS basics — how to write a style definition and how to apply it

to various elements within your documents. This chapter begins coverage of
the concentric areas that surround elements — also known as the box model.

The next chapter continues this discussion, covering colors and background
images.

The CSS Box Formatting Model
Although not overtly obvious, all elements in an HTML document are
contained within a box. That box has several properties — margins,
padding, and borders — that can be configured to help distinguish the
enclosed element from nearby elements.

Take a look at Figure 32-1, which shows a document that isn’t overtly boxy.

The same document is shown in Figure 32-2, but a thin border has been
added to every element courtesy of the following style:

* { border: thin solid black; }

Note how all the elements in the document pick up the border in a rectan-
gular box shape. The border becomes much thicker at the intersection of two
or more elements.

479

Part III: Controlling Presentation with CSS

FIGURE 32-1

This Web document does not appear overly boxy in appearance.

All elements have a margin, padding, and border property. These properties control the space
around the element’s contents and other elements around it. These properties stack around an
element in concentric box containers, as shown in Figure 32-3.

The element’s content (text, image, and so on) are immediately surrounded by padding. The
padding defines the distance between the element’s contents and its border.

The element’s border (if any) is typically drawn right inside the edge of the element’s padding.

Note
Some user agents place the border on the outside of the edge of an element’s padding. �

The element’s margin surrounds the element’s border, or the space the border would occupy if
no border is defined. The margin defines the distance between the element’s padding and neigh-
boring elements.

The next few sections cover each of these properties in more detail.

480

Chapter 32: Padding, Margins, and Borders

FIGURE 32-2

Every element in the document is in a box container, as shown when every element’s border is
enabled.

FIGURE 32-3

The box model comprises padding, a border, and a margin.

Margin

Border

Padding

Content

481

Part III: Controlling Presentation with CSS

Element Padding
An element’s padding defines the space between the element’s contents and the space its border
would occupy. This padding space can be increased, decreased, or set to an absolute value using
the following CSS properties:

� padding-top
� padding-right
� padding-left
� padding-bottom
� padding

The first four properties are predictable in their behavior. For example, padding-top will
change the padding on the top of the element, padding-right will change the padding on the
right side of the element, and so forth. The fifth property, padding, is a shortcut for all sides;
its effect is determined by the number of values provided, as explained in Table 32-1.

TABLE 32-1

Padding Values

Number of Values Provided Effect of the Values

One All sides are set to the value provided.

Two The top and bottom are set to the first value provided; the left and
right are set to the second value provided.

Three The top is set to the first value provided, the left and right are set
to the second value provided, and the bottom is set to the third
value provided.

Four The top is set to the first value provided, the right is set to the
second value provided, the bottom is set to the third value
provided, and the left is set to the fourth value provided. (In this
case, the values are applied in a clockwise order around the
element, starting with the top.)

For example, the following style will set the top and bottom padding value to 5 pixels and the
right and left padding to 10 pixels:

padding: 5px 10px;

Note
Although changing an element’s padding value will change its distance from neighboring elements, you
should use an object’s margin property to control that distance.

However, an element’s background color typically extends to the edge of the element’s padding. Therefore,
increasing an element’s padding can extend the background away from an element. This is one reason to
use padding instead of margins to increase space around an element. For more information on backgrounds,
see Chapter 33. �

482

Chapter 32: Padding, Margins, and Borders

As with all CSS properties, you can specify an absolute value (as in the preceding example) or a
relative value. When specifying a relative value, the value is applied to the size of the element’s
content (such as font size, and so on), not the default value of the padding. For example, the
following code would define padding as two times the element’s font size:

padding: 200%;

Element Borders
Borders are among the most versatile CSS properties. As you saw in Figure 32-2, every ele-
ment in an XHTML document can have a border. However, that figure showed only one type of
border — a single, thin, black line displayed around the entire element. Each side of an element
can have a different size and style of border, all controlled by CSS properties corresponding to
width (thickness), style (solid, dashed, dotted, and so on), and color of the border. The following
sections detail how each of the respective CSS properties can be used to affect borders.

Border width
The width of an element’s border can be specified using the border width properties, which
include the following:

� border-top-width
� border-right-width
� border-bottom-width
� border-left-width
� border-width

As with other properties that have an effect on multiple sides of an element, there are border
width properties for each side, and the border-width shortcut property can be used for
all sides.

Note
The border-width shortcut property accepts one to four values. The way the values are mapped to the
individual sides depends on the number of values specified. The rules for this behavior are the same as
those used for the padding property. Revisit the ‘‘Element Padding’’ section earlier in this chapter for the
specific rules. �

As with other properties, the width can be specified in absolutes or relative units. For example,
the first style in the following code sets all of an element’s borders to two pixels wide. The
second style sets all of an element’s borders to 50 percent of the element’s content size (generally
font size):

p.two-pixel { border-width: 2px;}
p.fifty-percent { border-width: 50%;}

You can also use keywords such as thin, medium, or thick to roughly indicate a border’s
width. The actual width used and what keywords are supported is up to the user agent. If you
want exact control over a border’s width, you should specify it using absolute values.

483

Part III: Controlling Presentation with CSS

Border style
There are ten different types of predefined border styles. These types are shown in Figure 32-4,
generated by the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Border Types</title>
<style type="text/css">
p { font-size: 12pt; border-width: 6pt;

text-align: center; padding: 20px;
margin: 10px; font-weight: bold;}

</style>
</head>
<body>
<p>
<table width="100%" cellspacing="20px">
<tr><td width="50%">
<p style="border-style:none ;">None & Hidden</p>
<p style="border-style:dotted ;">Dotted</p>
<p style="border-style:dashed ;">Dashed</p>
<p style="border-style:solid ;">Solid</p>
<p style="border-style:double ;">Double</p>

</td><td>
<p> </p>
<p style="border-style:groove;">Groove</p>
<p style="border-style:ridge ;">Ridge</p>
<p style="border-style:inset;">Inset</p>
<p style="border-style:outset;">Outset</p>
</td></tr>
</table>
</p>
</body>
</html>

Note
The border type hidden is identical to the border type none, except that the border type hidden is
treated like a border for border conflict resolution. Border conflicts happen when adjacent elements
share a common border (when there is no margin spacing between the elements). In most cases, the
most eye-catching border is used. However, if either conflicting element has the conflicting border set to
hidden, the border between the elements is unconditionally hidden. �

As with other properties of this type, there are several different border style properties:

� border-top-style
� border-right-style

484

Chapter 32: Padding, Margins, and Borders

� border-bottom-style
� border-left-style
� border-style

FIGURE 32-4

The various border styles available via CSS

The first four properties affect the side for which they are named. The last, border-style, acts
as a shortcut for all sides, following the same rules as other shortcuts covered in this chapter.
Refer to the ‘‘Element Padding’’ section for more information.

Border color
The border color properties enable you to set the color of the element’s visible border. As with
the other properties in this chapter, there are border color properties for each side of an element
(border-top-color, border-right-color, and so on) as well as a shortcut property
(border-color) that can affect all sides.

485

Part III: Controlling Presentation with CSS

You can choose from three different methods to specify colors in the border color properties:

� Color keywords — Black, white, maroon, and so on. Note that the exact color (mix of
red, green, and blue) is left up to the browser and its default colors. (See Appendix A for a
list of common color keywords.)

� Color hexadecimal values — Values specified in the form #rrggbb, where rrggbb
is two digits (in hexadecimal notation) for each of the colors red, green, and blue. For
example, #FF0000 specifies red (255 red, 0 green, 0 blue) and #550055 specifies purple
(equal parts of red and blue, but no green).

� Color decimal or percentage values — Values specified using the rgb() function. This
function takes three values, one each for red, green, and blue. The value can be an integer
between 0 and 255, or a percentage designated with an ending percent sign. For example,
the following specifies the color purple (equal parts red and blue, but no green) in integer
form and then again in percentages:

rgb(100, 0, 100)
rgb(50%, 0%, 50%)

Tip
Most graphic editing programs supply color values in multiple formats, including percentage RGB values
and perhaps even HTML-style hexadecimal format. �

Border property shortcuts
You can use the border property as a shortcut when specifying an element’s border properties.
The border property has the following syntax:

border: < border-width> <border-style> <border-color>;

For example, the following two styles set the same border for different paragraph styles:

p.one { border-width: thin;
border-style: solid;
border-color: black;}

p.two { border: thin solid black;}

Like the other properties, the border shortcut also has side-specific variants:

border-top
border-right
border-bottom
border-left

Each of these properties follows the same syntax as the border property, specifying the follow-
ing properties within its definition:

<border-width> <border-style> <border-color>

486

Chapter 32: Padding, Margins, and Borders

Tip
Keep in mind that you can use CSS inheritance to your advantage when specifying an element’s border. For
example, suppose you want all but the top border to be thick and black, and you want the top border to
be thin and red. Instead of specifying each side individually, you can use the border property to define
all borders to be thick and black, and then use the border-top property to define the top border as an
exception, similar to the following:

p.bordered { border: thick solid black;
border-top: thin solid red;} �

Border spacing
Two additional border properties are worth mentioning here, both of which are primarily used
with tables:

� border-spacing — This property controls how the user agent renders the space
between cells in tables.

� border-collapse — This property selects the collapsed method of table borders.

Cross-Ref
These properties are covered in more depth, along with other table properties, in Chapter 30. �

Element Margins
Margins are the space between an element’s border and neighboring elements. Margins are an
important property to consider and adjust as necessary within your documents. Most elements
have suitable default margins, but sometimes you will find it necessary to increase or decrease an
element’s margin(s) to suit your unique needs.

For example, consider the image and text shown in Figure 32-5, rendered using the follow-
ing code:

<p>Text next
to an image using default margins</p>

Notice how the ‘‘T’’ in ‘‘Text’’ is almost touching the image next to it. In this case, additional
margin space would be welcome.

As with other properties in this chapter, margin properties exist for each individual side
(margin-top, margin-left, and so on) as well as a shortcut property to set all sides at once
(margin). As with the other shortcut properties described herein, the margin property accepts
one to four values, and the number of values specified determines how the property is applied
to an element. See the ‘‘Element Padding’’ section earlier in this chapter for more information.

For example, you can increase the margins of the image in Figure 32-5 using a style similar to
the following:

margin-right: 5px;

487

Part III: Controlling Presentation with CSS

FIGURE 32-5

The default borders can sometimes cause elements to render too close to each other.

This would set the right border of the image (the edge next to the text) to five pixels. Likewise,
you can change all four margins using a shortcut such as the following:

margin: 2px 4px 10px 4px;

Note
The margin property is used as a shortcut for all sides, following the same rules as other shortcuts covered
in this chapter. See the ‘‘Element Padding’’ section for more information. �

Just as with the other properties in this chapter, the margin properties have variants that affect
each individual side of an element:

margin-top
margin-right
margin-bottom
margin-left

There are no guidelines for which margins you should adjust on what elements. However, it’s
usually best to modify the fewest margins possible or to be consistent with which margins you

488

Chapter 32: Padding, Margins, and Borders

do change. This will help to ensure that your elements look the way you intend and are main-
tainable with the least amount of effort.

Dynamic Outlines
Outlines are an additional layer that exists around an element, enabling the user agent to high-
light that element, if necessary. The highlight is generally used to indicate that a form element
has focus. Note that outlines do not occupy any space whether active or not; the element occu-
pies the same amount of space whether its outline is visible or not.

Figure 32-6 shows an example of a dynamic outline around the Phone label.

FIGURE 32-6

Dynamic outlines can be used to highlight objects that have focus or other importance.

Note
Using CSS you can modify the look of outlines. However, unlike other properties of elements covered
in this chapter, all sides of an outline must be the same. The CSS properties governing outlines include
outline-color, outline-style, outline-width, and the shorthand property outline. These
properties operate much like the other properties in this chapter, allowing the same values and having the
same effects. The format of the outline shortcut property is as follows:

outline: <outline-color> <outline-style> <outline-width>; �

489

Part III: Controlling Presentation with CSS

To use the outline properties dynamically, use the :focus and :active pseudo-elements. These
two pseudo-elements specify when an element’s outline should be visible — when it has focus or
when it is active. For example, the following definitions specify a thick, green border when form
elements have focus, and a thin, blue border when they are active:

form *:focus { outline-width: thick; outline-color: green;}
form *:active { outline-width: thin; outline-color: blue;}

Be aware that, as of this writing, user agent support for outlines is very inconsistent, if support
exists at all. If you intend to use outlines in your documents, you should test your code exten-
sively on all platforms you expect your audience to use.

Summary
This chapter covered the box model concept of CSS, the pieces making up the model for each
element, and the CSS properties that can be used to influence each. The box model is impor-
tant because it is part of every element in your document. As you have seen in this chapter,
using CSS to modify an element’s box can have drastic effects on the element and the document’s
formatting. The next chapter covers colors and backgrounds.

490

Colors and
Backgrounds

IN THIS CHAPTER
Element Colors

Background Images

The previous chapter covered the box formatting model of CSS. You
learned how you can manipulate an element’s concentric boxes to
better format your HTML documents. This chapter continues the dis-

cussion, covering element foreground and background colors, and the use of
images for element backgrounds.

Element Colors
Most elements in an HTML document have two color properties, a fore-
ground property and a background property. Both of these properties can
be controlled using CSS styles. The following sections discuss both types of
color properties.

Foreground colors
An element’s foreground color is typically used on the visible portion of
that element. In most cases, the visible foreground portion of an element is
text, but there are instances where the foreground contains other, nontextual
components. You can control the foreground color of an element using the
CSS color property, which has the following format:

color: <color_value>;

491

Part III: Controlling Presentation with CSS

As with other properties that use color values, the value of the color property can be expressed
using one of three methods:

� Predefined color keywords (such as blue, red, black, or green)

� Hexadecimal color values in #rrggbb form (#000000 for black, #FF0000 for red,
#FF00FF for dark purple, and so on)

� An RGB value using the rgb()function (rgb(100%,0%,0%) or rgb(255,0,0) for red)

For example, the following style defines a class of the paragraph element, which will be rendered
with a red font because the foreground color is set to red via the color property:

p.redtext { color: red; }

Expanding on this example, the following paragraph, when used with the preceding style, will
be rendered with red text:

<p class="redtext">This paragraph is important, and as such, appears
in red text. Other paragraphs in this section that are less
important, appear in standard black text.</p>

As with all style properties, you are not limited to element-level definitions. As shown in the
following style definition, you can define a generic class that can be used with elements, spans,
divisions, and more:

.redtext { color: red; }

Note
When defining an element’s foreground color, you should pay attention to what that element’s background
color will be, avoiding dark foregrounds on dark backgrounds and light foregrounds on light backgrounds.
However, matching foreground and background colors can have its uses, as discussed near the end of the
‘‘Background colors’’ section. �

Keep in mind that user agent settings can affect the color of elements, as can the user’s default
local style sheet. If you don’t explicitly define an element’s color using appropriate styles, it might
be otherwise chosen for you.

Background colors
An element’s background color can be thought of as the color of the virtual page on which the
element is rendered. For example, consider Figure 33-1, which shows two paragraphs: The first
is rendered against the user agent’s default background (in this case, white) and the second
against a light-gray background.

Note
Saying that a document has a default color of white is incorrect. The document will have the color specified
in the user agent’s settings or in the user’s default style sheet, if not otherwise instructed to change it. �

492

Chapter 33: Colors and Backgrounds

FIGURE 33-1

The background color is the color that an object rests on when rendered.

You can use the CSS background-color property to define a particular color that should be
used for an element’s background. The background-color property’s syntax is similar to other
element color properties:

background-color: <color_value>

For example, you could use this property to define a navy-blue background for the entire
document (or at least its body section):

body { background-color: navy;
color: white; }

This definition also sets a foreground color of white so the default text will be visible against the
dark background.

Sometimes it can be advantageous to use similar foreground and background colors together. For
example, on a forum that pertains to movie reviews, users may wish to publish spoilers — pieces
of the plot that others may not wish to know prior to seeing the movie. On this type of site, a

493

Part III: Controlling Presentation with CSS

style can be defined such that the text cannot be viewed until it is selected in the user agent, as
shown in Figure 33-2. You could define the style as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Spoiler Text</title>
<style type="text/css">
.spoiler { background-color: gray; color: gray; }

</style>
</head>
<body>
<p>I was surprised by the ending of <i>Titanic</i>:

At the end of the movie, the boat sinks.
</p>

</body>
</html>

FIGURE 33-2

A non-contrasting background has its uses.

Note that an element’s background extends to the end of its padding. If you want to enlarge
the background of an element, expand its padding accordingly. For example, both paragraphs
in Figure 33-3 have a lightly colored background. However, the second paragraph has had its
padding expanded, as shown in the following code:

494

Chapter 33: Colors and Backgrounds

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Expanding Backgrounds</title>
<style type="text/css">

p { background-color: #CCCCCC; }
p.larger-background { padding: 20px; }

</style>
</head>
<body>
<p>The Oasis boasts three saunas, two whirlpools, and a full-size

swimming pool for the use of our clients. Each of these facilities
has a small usage fee, but many services include the use of one or
more of these facilities--be sure to ask your service consultant
about our many combination packages.</p>
<p class="larger-background">The Oasis boasts three saunas, two

whirlpools, and a full-size swimming pool for the use of our clients.
Each of these facilities has a small usage fee, but many services
include the use of one or more of these facilities--be sure to ask
your service consultant about our many combination packages.</p>
</body>
</html>

FIGURE 33-3

An object’s background spans the size of its padding.

495

Part III: Controlling Presentation with CSS

Background Images
In addition to solid colors, you can specify an image for an element’s background. To do so, you
use the background-image property. This property has the following syntax:

background-image: url("<url_to_image>");

For example, the following code produces the document rendered in Figure 33-4, where the
paragraph is rendered over a light gradient image (gradient.gif):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Background Images</title>
<style type="text/css">
p.gradient { background-image: url("gradient.gif");

padding: 20px; }
</style>

</head>
<body>
<p class="gradient">The Oasis boasts three saunas, two whirlpools,

and a full-size swimming pool for the use of our clients. Each of
these facilities has a small usage fee, but many services include the
use of one or more of these facilities--be sure to ask your service
consultant about our many combination packages.</p>
<p>Background image:

<img src="gradient.gif" alt="gradient" width="400"
height="300" /></p>

</body>
</html>

Background images can be used for interesting effects, such as that shown in Figure 33-5,
rendered from the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Text Frame</title>
<style type="text/css">
div.sightbox { height: 300px; width: 400px;

background-image: url("sightframe.jpg");
background-repeat: no-repeat; }

div.sightbox p { font-size: small;
padding: 22px 120px 22px 25px; }

</style>
</head>
<body>
<div class="sightbox">

496

Chapter 33: Colors and Backgrounds

<p>Last week we were able to preview Foxfire II, the latest game
from Runaway Studios. FFII picks up where FFI left off, our hero
Colonel Cassius McQueen has just defeated the banshee colony. In a
stunning CG intro, we learn that the colony was not the only one
nesting on Earth and McQueen and company are again pressed into
service.

Although much of the flight engine has yet to be completed, one

level--a canyon flight--was close to being complete and we got a
preview of the game’s nape of the earth flying.

Thanks to Runaway for the quick peek. We look forward to a full

preview in the not too distant future!</p>
</div>
<p>Background image:

<img src="sightframe.jpg" alt="sight frame" width="400"
height="300" /></p>

</body>
</html>

FIGURE 33-4

Images such as this light gradient can also be used as backgrounds for objects.

497

Part III: Controlling Presentation with CSS

FIGURE 33-5

Background images can be used for interesting effects, such as frames around text.

Note how the various sides of the paragraph were padded to ensure that the text appears in the
correct position relative to the background frame without overfilling it.

Cross-Ref
Additional CSS formatting and display tips and tricks are covered in Chapter 41. �

Repeating and scrolling images
Element background images tile themselves to fill the available space, as you saw in Figure 33-4
where the gradient tiles horizontally to span the width of the paragraph. You can control the
scrolling and placement properties of a background image using the background-repeat and
background-attachment properties.

The background-repeat property has the following syntax:

background-repeat: repeat | repeat-x | repeat-y | no-repeat;

498

Chapter 33: Colors and Backgrounds

The background-attachment property has the following format:

background-attachment: <i>scroll | fixed</i>;

Using the background-repeat property is straightforward — its values specify how the image
repeats. For example, to repeat the crosshairs across the top of the paragraph, specify repeat-x,
as shown in the following definition code and Figure 33-6:

div.sightfill { background-image: url("sight.gif");
background-repeat: repeat-x;
/* Border to clarity paragraph */
border: thin solid black;
padding: 10px; }

FIGURE 33-6

Images used as backgrounds can also be tiled vertically, horizontally, or both.

Specifying repeat-y would repeat the image vertically instead of horizontally. If you specify
just repeat, the image tiles both horizontally and vertically. Specifying no-repeat will cause
the image to be placed once only, not repeating in either dimension.

499

Part III: Controlling Presentation with CSS

The background-attachment property specifies how the background image is attached to
the element. Specifying scroll allows the image to scroll with the contents of the element,
as shown by the second paragraph in Figure 33-7. Both paragraphs were rendered with the
following paragraph definition — the second paragraph has been scrolled a bit, vertically shifting
both text and image:

div.sightscroll { height: 220px; width: 520px;
/* Scroll the element’s content */
overflow: scroll;

/* Define a background image and set
it to scroll */

background-image: url("sight.gif");
background-attachment: scroll;
/* Border for clarity only */
border: thin solid black;
padding: 10px; }

FIGURE 33-7

Background images can be fixed in place or set to scroll with an object (notice the images scrolling
with the text in the second box).

500

Chapter 33: Colors and Backgrounds

Specifying a value of fixed for the background-attachment property will fix the background
image in place, causing it not to scroll if/when the element’s content is scrolled. This value is par-
ticularly useful for images used as the background for entire documents for a watermark effect.

Note
Using the overflow property in the code for Figure 33-7 controls what happens when an element’s
content is larger than its containing box. The scroll value enables scroll bars on the element so users can
scroll to see the entire content. The overflow property also supports the values visible (which causes
the element to be displayed in its entirety, despite its containing box size) and hidden (which causes the
portion of the element that overflows to be clipped and remain inaccessible to the user). �

Positioning background images
You can use the background-position property to control where an element’s background
image is placed in relation to the element’s containing box. The background-position
property’s syntax isn’t as straightforward as some of the other properties. This property has three
different forms for its values:

� Two percentages are used to specify where the upper-left corner of the image should be
placed in relation to the element’s padding area.

� Two lengths (in inches, centimeters, pixels, ems, and so on) specify where the upper-left
corner of the image should be placed in relation to the element’s padding area.

� Keywords specify absolute measures of the element’s padding area. The supported
keywords include top, left, right, bottom, and center.

No matter what format you use for the background-position values, the syntax for the definition
is as follows:

background-position: <horizontal_value> <vertical_value>;

If only one value is given, it is used for the horizontal placement and the image is centered
vertically. The first two formats can be mixed together (for example, 10px 25%), but keywords
cannot be mixed with other values (for example, center 30% is invalid).

To center a background image behind an element, you can use either of the following
definitions:

background-position: center center;
background-position: 50% 50%;

If you want to specify an absolute position behind the element, you can do so as well:

background-position: 10px 10px;

Tip
You can combine the background image properties to achieve diverse effects. For example, you can use
background-position to set an image to appear in the center of the element’s padding, and specify
background-attachment: fixed to keep it there. Furthermore, you could use background-repeat
to repeat the same image horizontally or vertically, creating striping behind the element. �

501

Part III: Controlling Presentation with CSS

The background shortcut property
The background property is one of the more powerful shortcut properties, combining the
background-color, background-image, background-repeat, background-attachment,
and background-position properties in one property declaration. It has the following syntax:

background: <background-color> <background-image>
<background-repeat> <background-attachment> <background-position>

You can use this shortcut property, for example, to define a background image and its particulars
all together:

background: url(’/images/joystickicon.jpg’) repeat-x left center;

As with all shortcut properties, you should balance your use of it between convenience and
readability. Generally speaking, it’s easier to gather all information about an element from within
one aggregated property, but longer property declarations require decoding of their own.

Summary
This chapter covered how CSS can affect the background and foreground of an element,
employing colors and images. You learned how to change the text color of an element using the
color property and how to use the background properties to change an element’s background.
The last chapters in this part of the book cover CSS formatting, generated and dynamic content,
and how to define pages for printing.

502

CSS Layouts

IN THIS CHAPTER
Understanding CSS

Positioning

Specifying the Element
Position

Floating Elements to the Left
or Right

Defining an Element’s Width
and Height

Stacking Elements in Layers

Controlling Element Visibility

In the various chapters within this part, you have seen how dynamic
documents can be when formatted with CSS. This chapter describes
how you can position elements to create various page layouts using CSS

properties.

Understanding CSS Positioning
There are several ways to position elements using CSS. Which method you
use depends on what you want the element’s position to be in reference
to and how you want the element to affect other elements around it. The
following sections cover the three main positioning models.

Note
It is important to include a valid DTD within documents using positioning.
Without a valid DTD the browser might be prone to slipping into quirks
mode and refuse to position your elements properly. For more information
on quirks mode, see www.quirksmode.org. For more information on DTDs,
see Chapter 1 of this book. �

Static positioning
Static positioning is the standard positioning model — elements are rendered
inline or within their respective blocks as normal. Figure 34-1 shows three
paragraphs; the middle paragraph has the following styles applied to it:

width: 350px;
height: 200px;
border: 1pt solid black;
background-color: white;
padding: .5em;
position: static;

503

Part III: Controlling Presentation with CSS

Note
Several styles have been inserted for consistency throughout the examples in this section. A border and
background have been added to the element to enhance the visibility of the element’s scope and position.
The element also has two positioning properties (top and left), although they do not affect the static
positioning model. �

FIGURE 34-1

Static positioning is the normal positioning model, rendering elements where they should naturally be.

Relative positioning
Relative positioning is used to move an element from its normal position — where it would nor-
mally be rendered — to a new position. The new position is relative to the normal position of
the element.

Figure 34-2 shows the second paragraph positioned using the relative positional model. The
paragraph is positioned using the following styles (pay particular attention to the last three:
position, top, and left):

width: 350px;
height: 200px;

504

Chapter 34: CSS Layouts

border: 1pt solid black;
background-color: white;
padding: .5em;
position: relative;
top: 100px;
left: 100px;

FIGURE 34-2

Relatively positioned elements are positioned relative to the position they would otherwise occupy.

With relative positioning, you can use the side positioning properties (top, left, and so on)
to position the element. Note the one major side-effect of using relative positioning: The space
where the element would normally be positioned is left open, as though the element were
positioned there.

Note
The size of the element is determined by the sizing properties (width or height), the positioning of the
element’s corners (via top, left, and so on), or by a combination of properties. �

505

Part III: Controlling Presentation with CSS

Absolute positioning
Elements using absolute positioning are placed in an absolute position, relative to the viewport
instead of their normal position in the document. For example, the following styles are used to
position the second paragraph in Figure 34-3:

width: 350px;
height: 200px;
border: 1pt solid black;
background-color: white;
padding: .5em;
position: absolute;
top: 30px;
left: 30px;

FIGURE 34-3

The absolute positioning model uses the user agent’s viewport for positioning reference.

Note that the positioning properties are referenced against the viewport when using the absolute
positioning model. The element in this example is positioned 30px from the top and 30px from
the left of the viewport’s edges.

506

Chapter 34: CSS Layouts

Unlike the relative positioning model, absolute positioning does not leave space where the ele-
ment would have been positioned. Neighboring elements position themselves as though the
element were not present in the rendering stream.

Fixed positioning
Fixed positioning is similar to absolute positioning in that the element is positioned relative to the
viewport. However, fixed positioning causes the element to be fixed in the viewport — it will
not scroll when the document is scrolled; it maintains its position. The following code is used to
position the second paragraph shown in Figures 34-4 and 34-5:

width: 350px;
height: 200px;
border: 1pt solid black;
background-color: white;
padding: .5em;
position: fixed;
top: 100px;
left: 100px;

FIGURE 34-4

Elements using the fixed positioning model are positioned relative to the viewport, much like
absolute positioning.

507

Part III: Controlling Presentation with CSS

FIGURE 34-5

Elements using the fixed positioning model do not scroll within the viewport, as shown when this
document scrolls (note the scroll bar’s position compared to that in Figure 34-4).

Note that when the document scrolls (refer to Figure 34-5) the fixed element stays put.

Note
Not all user agents support all the positioning models. In addition, some user agents change their sup-
port between versions — the positioning support in Internet Explorer 7 is different from that in Internet
Explorer 6, for example. Before relying upon a particular model in your documents, you should test the
documents in your target user agents. �

Specifying the Element Position
Element positioning can be controlled by four positioning properties: top, right, bottom, and
left. The effect of these properties on the element’s position is largely driven by the type of
positioning being used on the element.

508

Chapter 34: CSS Layouts

The positioning properties have the following format:

<side>: <length> | <percentage> ;

The specified side of the element is positioned according to the value provided. If the value is a
length, the value is applied to the reference point for the positioning model being used — the
element’s otherwise normal position if the relative model is used, the viewport if the absolute or
fixed model is used. For example, consider the following code:

position: relative;
right: 25%;

These settings result in the element being shifted to the left by 25 percent of its width, as shown
in Figure 34-6. This is because the user agent is told to position the right side of the element
25 percent of the element’s width from where it should be.

FIGURE 34-6

A relative, 50% right value results in an element being shifted to the left by 50% of its width.

509

Part III: Controlling Presentation with CSS

Note
This type of positioning can be confusing. For example, positioning an element right 50 percent means that
it will be positioned 50 percent away from where it would have been on the right, which is the same as
50 percent toward the left. �

However, if the following settings are used, the element is positioned with its left side in the
horizontal center of the viewport, as shown in Figure 34-7:

position: absolute;
left: 50%;

FIGURE 34-7

An absolute, 50% left value results in an element being shifted such that its left side is in the middle
of the viewport.

510

Chapter 34: CSS Layouts

Here, the user agent references the positioning against the viewport (absolute), so the element’s
left side is positioned at the horizontal 50-percent mark of the viewport.

Note
Positioning alone can drive the element’s size. For example, the following code will result in the element
being scaled horizontally to 25 percent of the viewport, the left side positioned at the 25-percent horizontal
mark, and the right at the 50-percent horizontal mark:

position: absolute;
left: 25%;
right: 50%;

Whichever property appears last in the definition has the most influence over the final size of the element.
For example, the following definition will result in an element that has its left side positioned at the view-
port’s horizontal 25-percent mark, but is 300 pixels wide (despite the size of the viewport):

position: absolute;
left: 25%;
right: 50%;
width: 300px;

The width property overrides the right property because of the cascade effect of CSS. �

Floating Elements to the Left or Right
Another method to position elements is to float them outside of the normal flow of elements.
When elements are floated, they remove themselves from their normal position and float to the
specified margin.

The float property is used to float elements. This property has the following format:

float: right | left | none;

If the property is set to right, the element is floated to the right margin. If the property is set
to left, the element is floated to the left margin. If the property is set to none, the element
maintains its normal position according to the rest of its formatting properties. If the element is
floated to a margin, the other elements will wrap around the opposite side of the element. For
instance, if an element is floated to the right margin, the other elements wrap on the left side of
the element’s bounding box.

Compare the image in Figure 34-8, which is not floated and appears in the normal flow of
elements, with the same image floated to the right margin (via the style float: right) in
Figure 34-9.

511

Part III: Controlling Presentation with CSS

FIGURE 34-8

A nonfloated image is rendered where its tag appears.

Cross-Ref
If you don’t want elements to wrap around a floated element, you can use the clear property to keep the
element away from floaters. See Chapter 30 for more information on the clear property. �

The float property can also be used to effectively create parallel columns from elements. For
example, consider the following code, whose output is shown in Figure 34-10:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

<html>
<head>
<title>Parallel Floated Divs</title>
<style type="text/css">
div {
border: 1pt solid black;
padding: 10px;

512

Chapter 34: CSS Layouts

width: 200px;
height: 400px;
float: left;

}
</style>

</head>
<body>
<div id="1"><p>This is text for div 1</p></div>
<div id="2"><p>This is text for div 2</p></div>
<div id="3"><p>This is text for div 3</p></div>
</body>
</html>

FIGURE 34-9

An image that is floated is removed from the normal flow and is moved to the specified margin (in
this case, the right margin). The other elements wrap on the exposed side of the element.

To create margins for the text within the columns, use the corresponding element’s padding
properties. Likewise, to increase the margins outside the columns — between the column and
neighboring elements — use the corresponding element’s margin properties.

513

Part III: Controlling Presentation with CSS

FIGURE 34-10

Floated elements stacked against one another can be used for multiple, parallel columns.

Defining an Element’s Width and Height
There are multiple ways to affect an element’s size. You have seen how other formatting can
change an element’s size; in the absence of explicit sizing instructions the user agent does its
best to make everything fit. However, if you want to intervene and explicitly size an element,
you can. The following sections show you how.

Specifying exact sizes
You can use the width and height properties to set the size of the element. For example, if
you want a particular section of the document to be exactly 200 pixels wide, you can enclose
the section in the following <div> tag:

<div style="width: 200px;"> ... </div>

Likewise, if you want a particular element to be a certain height, you can specify the height using
the height property.

514

Chapter 34: CSS Layouts

Note
Keep in mind that you can set size constraints — minimum and maximum sizes — as well as explicit sizes.
See the next section for details on minimum and maximum sizes. �

Specifying maximum and minimum sizes
There are properties to set maximum and minimum sizes for elements as well as explicit sizes.
At times, you will want the user agent to be free to size elements by using the formatting sur-
rounding the element, while still maintaining some constraint to ensure that an element will be
displayed in its entirety, rather than be clipped or displayed in a sea of white space.

Note
Most user agents do not support min and max CSS settings. �

You can use the following properties to constrain an element’s size:

� min-width
� max-width
� min-height
� max-height

Each property takes a length or percentage value to limit the element’s size. For example, to limit
the element from shrinking to less than 200 pixels in height, you could use the following:

min-height: 200px;

Tip
All of the length and width properties accept values in any acceptable length format — pixels, ems, points,
percentages, and so on. �

Controlling element overflow
Whenever an element is sized independently of its content, there is a risk of the element becom-
ing too small for its content. For example, consider the paragraphs in Figure 34-11. They are the
same except that the second paragraph has had its containing box specified too small, causing
the contents to fall outside of the border.

In this example, the user agent chose to display the rest of the element outside its bounding box.
Other user agents may crop the element or refuse to display it at all.

If you want to control how the user agent handles mismatched elements and content sizes, use
the overflow property. This property has the following format:

overflow: visible | hidden | scroll | auto;

515

Part III: Controlling Presentation with CSS

FIGURE 34-11

An element that is mis-sized doesn’t always handle its content properly.

The values have the following effect:

� visible — The content is not clipped and is displayed outside of its bounding box, if
necessary (refer to Figure 34-11).

� hidden — If the content is larger than its container, the content will be clipped. The
clipped portion will not be visible, and the user will have no way to access it.

� scroll — If the content is larger than its container, the user agent should contain the
content within the container but supply a mechanism for the user to access the rest of the
content (usually through scroll bars).

� auto — The handling of element contents is left up to the user agent. Overflows, if they
happen, are handled by the user agent’s default overflow method.

Figure 34-12 shows the same paragraph shown in Figure 34-11, but with its overflow property
set to scroll. The user agent obliges by providing scroll bars to access the rest of the element’s
content.

516

Chapter 34: CSS Layouts

FIGURE 34-12

When the overflow property is set to scroll, the user agent supplies a mechanism (usually scroll
bars) to view the entire content.

Stacking Elements in Layers
Using CSS positioning often causes elements to be stacked on top of one another. Usually, you
can anticipate how the elements will stack and leave the user agent to its own devices regarding
the final display of stacked elements. At times, however, you will want to explicitly specify how
overlapping elements stack. To control the stacking of elements, you use the z-index property.

The z-index property has this format:

z-index: value;

This property controls where elements should be positioned in the third dimension of the oth-
erwise flat HTML media. Because the third dimension is typically referred to along a Z axis, this
property is named accordingly (with a Z). You can think of the z-stack as papers stacked on a
desktop, overlapping each other — some of the papers are covered by others.

517

Part III: Controlling Presentation with CSS

The value of the z-index property controls where on the stack the element should be placed.
The beginning reference (the document) is typically at index 0 (zero). Higher numbers place the
element higher in the stack, as shown in the diagram in Figure 34-13.

FIGURE 34-13

The effect of the z-index property

Document
(Index: 0)

Index: 1

Index: 2

Index: 3

Figure 34-14 offers a practical example of z-index stacking. Each element is assigned a z-index,
as shown in the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Z-index Stacking</title>
<style type="text/css">

518

Chapter 34: CSS Layouts

.box1 { position: absolute;
top: 25%;
left: 25%;
width: 200px;
height: 200px;
background-color: red;
color: white;
z-index: 200; }

.box2 { width: 400px;
height: 400px;
background-color: yellow;
z-index: 100; }

.box3 { width: 400px;
height: 100px;
background-color: green;
position: absolute;
top: 20%;
left: 10%;
color: white;
z-index: 150; }

</style>
</head>
<body>
<div class="box2">
<p>Box 2: Lorem ipsum dolor sit amet, consectetuer adipiscing

elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud
exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat. Duis autem vel eum iriure dolor in hendrerit in
vulputate velit esse molestie consequat, vel illum dolore eu feugiat
nulla facilisis at vero eros et accumsan et iusto odio dignissim qui
blandit praesent luptatum zzril delenit augue duis dolore te feugait
nulla facilisi.</p>
<p class="box1">Box 1: This is text</p>
<p>Ut wisi enim ad minim veniam, quis nostrud exerci tation

ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate
velit esse molestie consequat, vel illum dolore eu feugiat nulla
facilisis at vero eros et accumsan et iusto odio dignissim qui
blandit praesent luptatum zzril delenit augue duis dolore te feugait
nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore
magna aliquam erat volutpat.</p>
</div>
<div class="box3">
<p>Box 3: This is text.</p>

</div>
</body>
</html>

519

Part III: Controlling Presentation with CSS

FIGURE 34-14

A sample of z-index stacking

The code uses a mix of div and p elements for diversity. Because the index for box1 is
the highest (200), it is rendered on the top of the stack. The index for box3 is the next
highest (150), so it is rendered second to the top. The index for box2 is the lowest (100), so it
is rendered near the bottom. The document itself is recognized as being at 0, so its content and
any other unspecified elements are rendered at the bottom of the stack.

If you change the z-index of spa to 300, it will then render over logo, as shown in
Figure 34-15.

Tip
You can use many of the properties in this chapter for animation purposes. Using JavaScript, you can
dynamically change an element’s size, position, and/or index to animate it. For more information, see
Chapters 16, 17, and 36. �

520

Chapter 34: CSS Layouts

FIGURE 34-15

Changing an element’s z-index changes its position in the stack.

If you then change the z-index of logo to –200, it will render under the main body of the
document (whose z-index is 0), as shown in Figure 34-16.

The effect shown in Figure 34-16 has several caveats:

� The user agent must support such layering.

� The user agent must support transparent backgrounds for the block to show through the
document layer.

� The main document layer must not have a background that would otherwise obscure the
visibility of the lower layers.

521

Part III: Controlling Presentation with CSS

FIGURE 34-16

Items can have negative z-index values as well.

Controlling Element Visibility
You can use the visibility property to control whether an element is visible or not. The
visibility property has the following format:

visibility: visible | hidden | collapse;

The visible and hidden values are fairly self-explanatory — set to visible (default), an
element is rendered as normal; set to hidden, the element is still rendered but not displayed.

Note
Even though an element is hidden with visibility, set to hidden it will still affect the layout — that is,
space for the element is still reserved in the layout. �

The collapse value causes an element with rows or columns to collapse its borders. If the
element does not have rows or columns, then this value is treated the same as hidden.

522

Chapter 34: CSS Layouts

Cross-Ref
For more information on collapsing borders, see Chapter 30. �

To truly hide an element, set its display property to none. An element styled this way will not
be part of the render stream; it will be invisible and completely unknown within the user agent’s
rendering of the document’s. However, the element will still be visible within the document’s
source.

Summary
This chapter covered the use of CSS to position elements, another one of the key concepts that
really unlocks the power of CSS. If you master modifying the box model — padding, borders,
and margins — and positioning, you have the power to create some truly amazing documents.
The next few chapters wrap up the coverage of CSS with information on some of the more niche
CSS topics.

523

Pseudo-Elements
and Generated
Content

IN THIS CHAPTER
The Content Property

Pseudo-Elements

Quotation Marks

Numbering Elements
Automatically

CSS works extremely well when you have concrete, single-state HTML
elements to which to assign properties; but what happens when
you want to assign certain properties to pieces of a document that

aren’t delimited by standard elements? In addition, there are times when it
is convenient or necessary to automatically include generated content around
elements. These out-of-bound cases are where CSS pseudo-elements come in
handy.

This chapter introduces you to CSS pseudo-elements and generated content
using CSS methods.

The Content Property
The CSS content property plays a key role in pseudo-elements, as it
provides the actual content used by two pseudo-elements, :before and
:after. The property itself is very simple and has the format

content: "<text>"

where "<text>" is the text that comprises the content. Note that the text
must be plain text — no markup or other content needing parsing — and
it must be enclosed in quotes. The text itself will inherit the attributes of its
parent element.

The next section examines the particulars of using the content property
with the :before and :after pseudo-elements, but use of the content

525

Part III: Controlling Presentation with CSS

property is not limited to those two elements. For example, the content property can be
used to auto-generate content within any element. Consider the following code and the result
shown in Figure 35-1 (the additional styles for the div are to enhance its visibility for the
figure):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>The Content Property</title>
<style type="text/css">
div.text { padding: 20px;
border: thin solid black;
content: "Auto-generated text for the div";
}
</style>
</head>
<body>
<div class="text">
<p>This text will be replaced by the content property.</p>
</div>
</body>
</html>

FIGURE 35-1

The content property can supply auto-generated content for any textual element.

526

Chapter 35: Pseudo-Elements and Generated Content

The content property can be used to insert content other than plain text, such as media deliv-
ered via the url() function. For example, the following property definition uses the content
property to insert a wav sound effect:

content: url(’media/sound.wav’);

Note
Some applications of the content property are impractical and could be annoying to users. Still, it is worth
noting the content property’s capabilities for special applications. �

It is important to note that the value of the content property replaces the contents of the div.
This is true for any element that has a content property — whatever content is initially placed
within the element will not be rendered in the user agent.

The content property can also be used to automate quotation marks by using a special quotes
property to define the quote marks, and unique keywords to insert the marks. Quotations marks
are covered later in this chapter.

Note
As of this writing, few browsers support using the content property or pseudo-elements. �

Pseudo-Elements
CSS pseudo-elements enable you to assign properties to areas of a document that are not delim-
ited by standard elements. Table 35-1 lists the available pseudo-elements and their scope — that
is, the amount of a document they affect.

TABLE 35-1

Pseudo-Elements

Element Scope

:first-line The first line of an element’s text — that is, text from the beginning of the
element to the first line wrap, end of the paragraph, or line break.

:first-letter The first letter of an element’s text

:before The space before an element. Commonly used to automatically place
content before an element.

:after The space after an element. Commonly used to automatically place content
after an element.

Note that each element begins with a colon (:) because the identifiers are meant to be appended
to the end of a selector, turning the elements that match that selector into pseudo-elements.

527

Part III: Controlling Presentation with CSS

For example, consider the following two selectors, the first without and the second with an
:after identifier:

/* selector (p) with no pseudo-element */
p { color: white;
background-color: black;
padding: 10px;}
/* selector (p) with pseudo-element */
p:after { color: white;
background-color: black;
padding: 10px;}

The pseudo-element identifier can be used with the most complex of selectors; simply append it
to the last element of the selector, as in the following example:

div.sidebar p:after { ...}

Any paragraph that is a descendant of a div, with a class of sidebar, will have the :after
pseudo-element applied.

Note
In CSS versions 1 and 2, both pseudo-elements and pseudo-classes began with a single colon (:).
This will change in CSS3 — pseudo-elements will begin with two colons (::) to distinguish them from
pseudo-classes. As of this writing, CSS3 is still under development, and adoption of its conventions is
scarce. As such, we will stick with the CSS2 conventions. �

The following sections detail the effects of the various pseudo-elements.

:first-line
The :first-line pseudo-element enables you to dynamically style the first line of an element.
Of course, there are many things that can change the length of an element’s first line, including
a change in the size of the user agent’s window, movement of elements within the document,
or a subsequent change of the element’s content.

If the element’s text wrapping changes for any reason, the scope of the pseudo-element does as
well. This effect can be seen in Figure 35-2, where two different-sized windows display the same
paragraph using this style:

div:first-line { text-decoration: underline;}

:first-letter
The :first-letter pseudo-element enables you to style the first letter of an element. This
ability is typically used for typographic effects such as drop caps, where the first letter of a
section of text is printed in a larger or stylistic manner to offset it from the rest of the text. An
example of this technique is provided with the following, whose output is shown in Figure 35-3:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

528

Chapter 35: Pseudo-Elements and Generated Content

<html>
<head>
<title>Drop Cap Effects</title>
<style type="text/css">
div.dropcap p:first-letter {
padding: 5px;
border: 1pt solid black;
font-size: 300%;
line-height: .8em;
margin-right: 10px;
float: left;
}
</style>
</head>
<body>
<div class="dropcap">
<p>Welcome to The Oasis of Tranquility, your source of day
spa services at hair salon prices. Come visit us for that
deep tissue or relaxing massage, facial, manicure, or
hair coloring you have been putting off.

Our concept is simple{\emdash}to provide luxurious service
affordable to most consumers. So stop in and let our experts
please and pamper you today.</p>
</div>
</body>
</html>

FIGURE 35-2

The :first-line pseudo-element can be used to style the first line of an element — the styling is
dynamic and changes if and when the first line changes.

529

Part III: Controlling Presentation with CSS

FIGURE 35-3

The :first-letter pseudo-element can create effective drop caps.

In the preceding example, a handful of additional properties help craft the drop-cap effect:

� The padding and border properties produce a thin border without crowding the letter.

� The font-size property sets the size of the letter to an appropriate size for a drop cap.

� The line-height property shortens the height of the box, giving it a more square profile.

� The margin-right property widens the space between the drop cap and the text to its
right.

� The float property enables the drop cap to occupy the vertical space of several lines,
instead of only the line on which it appears (the first line).

Tip
Combine the :first-letter and :first-line pseudo-elements to create a drop cap and first-line
stylistic combo. �

:before and :after
The :before and :after pseudo-elements enable you to specify text that will be automatically
prepended or appended to an element. Both pseudo-elements have the same syntax; one simply
controls the space before the element to which it is attached, and the other controls the space
after the element to which it is attached.

530

Chapter 35: Pseudo-Elements and Generated Content

For example, you could use a definition similar to the following to insert a colon after every h1
element:

h1:after { content: ":";}

Likewise, you can use the :before pseudo-element to add content before an element. For
example, you could add the word ‘‘Section’’ before all h1 elements using a definition similar to
the following:

h1:before { content: "Section";}

You can also use the :before and :after pseudo-elements to help automate quotation marks,
as outlined in the next section.

Note
When using string values with the content property, be sure to enclose the string in quotes. If you need
to include newlines in the text, use the \A placeholder. �

Quotation Marks
You can use the auto-generation features of CSS to define and then automatically display quo-
tation marks. First, you need to define the quotes, and then you can add them to appropriate
elements.

The quotes property takes a list of arguments in string format to use for the open and close
quotes at multiple levels. The various levels are designed to accommodate nested quotation
marks. This property has the following form:

quotes: <open_first_level> <close_first_level>
<open_second_level> <close_second_level> $ $$\ldots$;

The standard definition for most English uses is as follows:

quotes: ‘‘‘’ ‘’’’ ‘‘’’’ ‘‘’’’;

This specifies a double-quote for the first level (open and closing) and a single-quote for the
second level (open and closing). Note the use of the opposite quote type (single enclosing double
and vice versa) within the definition.

Note
Most user agents do not support auto-generated content. �

Once you define the quotes, you can use them along with the :before and :after
pseudo-elements, as in the following example:

blockquote:before { content: open-quote;}
blockquote:after { content: close-quote;}

531

Part III: Controlling Presentation with CSS

The open-quote and close-quote words are shortcuts for the values stored in the quotes
property. Technically, you can place just about anything in the content property, as it accepts
string values. The next section shows how you can use the content property to create automatic
counters.

Numbering Elements Automatically
One of the nicest features of using the content property with counters is the ability to automat-
ically number elements. The advantage to using counters over standard lists is that counters are
more flexible, enabling you to start at an arbitrary number, combine numbers (for example, 1.1),
and so on.

Note
Most user agents do not support counters. �

The counter object
A special object, counter, can be used to track a value, and can be incremented and reset by
other style operations. The counter object has the following form when used with the content
property:

content: counter(<char:Variable>counter_name}</char:Variable>);

This places the current value of the counter in the content object. For example, the following
style definition will display ‘‘Chapter’’, the current value of the ‘‘chapter’’ counter, and a space at
the beginning of each h1 element:

h1:before { content: "Chapter " counter(chapter) " ";}

Of course, it’s of no use to always assign the same number to the :before pseudo-element.
That’s where the counter-increment and counter-reset objects come in, described in the
next section.

Changing the counter value
The counter-increment property takes a counter object as an argument and increments its
value by one. You can also increment the counter by other values by specifying the value to
add to the counter. For example, to increment the chapter counter by 2, you would use this
definition:

counter-increment: chapter 2;

532

Chapter 35: Pseudo-Elements and Generated Content

Tip
You can increment several counters with the same property statement by specifying the additional counters
after the first, separated by spaces. For example, the following definition will increment the chapter and
section counters each by 2:

counter-increment: chapter 2 section 2; �

You can also specify negative numbers to decrement the counter(s). For example, to decrement
the chapter counter by 1, you can use the following:

counter-increment: chapter -1;

The other method for changing a counter’s value is to use the counter-reset property. This
property resets the counter to zero or, optionally, an arbitrary number specified with the prop-
erty. The counter-reset property has the following format:

counter-reset: <char:Variable>{\it counter_name}</char:Variable>
[value];

For example, to reset the chapter counter to 1, you can use this definition:

counter-reset: chapter 1;

Tip
You can reset multiple counters with the same property by specifying all the counters on the same line,
separated by spaces. �

If a counter is used and incremented or reset in the same context (in the same definition), then
the counter is first incremented or reset before being assigned to a property or otherwise used.
This is important to keep in mind to ensure that the first use of the counter is the correct value.

A counter example: chapter and section numbers
Using counters, you can easily implement an auto-numbering scheme for chapters and sections.
To implement this auto-numbering, use h1 elements for chapter titles, and h2 elements for
sections. We will use two counters, chapter and section, respectively.

First, set up your chapter heading definition as follows:

h1:before {content: "Chapter " counter(chapter) ": ";
counter-increment: chapter;
counter-reset: section;}

533

Part III: Controlling Presentation with CSS

This definition will display ‘‘Chapter chapter_num:’’ before the contents of each h1 element. The
chapter counter is incremented and the section counter is reset — both of these actions take
place prior to the counter and text being assigned to the content property. Therefore, the fol-
lowing text would result in the output shown in Figure 35-4:

<h1>First Chapter Title</h1>
<h1>Second Chapter Title</h1>
<h1>Third Chapter Title</h1>

FIGURE 35-4

Auto-numbering h1 elements

The next step is to set up the section numbering, which is similar to the chapter numbering but
is applied to the h2 elements (subheadings of h1):

h2:before {content: "Section " counter(chapter) "."
counter(section) ": ";
counter-increment: section;
h2 { text-indent: 20px;}

We also add text-indent to indent the subheads. Now the styles are complete. The final,
following code results in the display shown in Figure 35-5:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

534

Chapter 35: Pseudo-Elements and Generated Content

<title>Chapter Auto-Number</title>
<style type="text/css">

h1:before {content: "Chapter " counter(chapter) ": ";
counter-increment: chapter;
counter-reset: section;}

h2:before {content: "Section " counter(chapter) "."
counter(section) ": ";
counter-increment: section;}

h2 { text-indent: 20px;}
</style>

</head>
<body>
<h1>First Chapter Title</h1>

<h2>Section Name</h2>
<h2>Section Name</h2>

<h1>Second Chapter Title</h1>
<h2>Section Name</h2>

<h1>Third Chapter Title</h1>
</body>
</html>

FIGURE 35-5

The completed auto-numbering system numbers both chapters and sections.

535

Part III: Controlling Presentation with CSS

Tip
The counters should automatically start with a value of 0. In this example, that is ideal. However, if
you need to start the counters at another value, you can attach resets to a higher tag (such as <body
id="c35-body-0001">), as in the following example:

body:before {counter-reset: chapter 12 section 10;} �

Custom list numbers
You can use a similar construct for custom list numbering. For example, consider the following
code, which starts numbering the list at 20:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>List Custom Numbering</title>
<style type="text/css">
li:before {content: counter(list) ": ";

counter-increment: list;}
</style>

</head>
<body>
<ol style="counter-reset: list 19;

list-style-type:none;">
First item
Second item
Third item

</body>
</html>

Note that the tag resets the counter to 19 because of the way the counter-increment
works (it causes the counter to increment before it is used). So you must set the counter one
lower than the first occurrence.

Tip
You can have multiple instances of the same counter in your documents, and they can all operate inde-
pendently. The key is to limit each counter’s scope: A counter’s effective scope is within the element that
initialized the counter with the first reset. In the example of lists, it is the tag. If you nested another
 tag within the first, it could have its own instance of the list counter, and they could operate inde-
pendently of each other. �

Summary
This chapter covered using pseudo-elements and generating content using CSS. Pseudo-elements
enable you to select pieces of the document that aren’t bound by traditional element boundaries,

536

Chapter 35: Pseudo-Elements and Generated Content

such as the first letter or first line of an element. Also introduced was the content property,
which enables arbitrary pieces of text to be defined and then inserted via other CSS elements.
Such a mechanism can automatically insert quotation marks or other desirable text. The last part
of the chapter covered counters, which enable you to define and use an automatic numbering
system, to auto-number elements (such as headers) or to custom number numbered lists. The
next chapter expands on these concepts by introducing dynamic content.

537

Dynamic HTML
with CSS

IN THIS CHAPTER
Accessing CSS Properties with

JavaScript

Useful CSS Manipulation

CSS can be a powerful tool for creating well-formatted documents.
This chapter describes how you can change a CSS property in vari-
ous user agents to lend a dynamic nature to documents. Here, you’ll

learn how to access CSS properties and script them to perform tasks, such
as change text colors. You’ll see that every CSS property can be changed
programmatically.

You’ll also find that some browsers, most notably Internet Explorer, feature
CSS-like syntax for creating dynamic filtered effects such as drop shadows
and blurs.

Accessing CSS Properties
with JavaScript
Mozilla and Internet Explorer (IE) browsers make CSS1 element properties
accessible from JavaScript through their Document Object Model (DOM).
However, the Mozilla DOM and Internet Explorer DOM are different. They
both implement parts of the W3C CSS2 standards, but they consistently
cover different areas, so CSS2 JavaScript code on one browser may not
work on other browsers. Note that the Gecko layout engine covers all of the
properties in W3C CSS2 standards.

Generally, CSS properties are all accessed the same way, via reading values
as properties and setting values via methods. To access the CSS properties in
script, you use the property name, unless there’s a hyphen in the name. In
the case of hyphenated property names, delete the hyphen and uppercase the
next letter. The rest of the property name remains in lowercase. For example,

font-size

539

Part III: Controlling Presentation with CSS

becomes

fontSize

The property name is then appended to the object name/id with a style collection. For example,
to access the font-size property of an object named bigText, you can use the following
statement:

bigText.style.fontSize

In turn, that statement can be used to assign a value to the object’s property. For example,
the following JavaScript statement sets the font-size property of the element with an id of
bigText to xx-large:

bigText.style.fontSize = "xx-large";

Consider the code in the following document. When the paragraph in the document is clicked,
the onClick handler runs the SuperSizeMe()JavaScript function, which sets the paragraph’s
font-size property to xx-large (effectively supersizing the paragraph). Figure 36-1 shows
the paragraph before it is clicked, and Figure 36-2 shows the paragraph after it is clicked.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Super Size Me</title>
<style type="text/css">
#bigText { font-size: medium;}

</style>
<script type="text/JavaScript">

function SuperSizeMe(obj) {
obj.style.fontSize = "xx-large";

}
</script>

</head>
<body>
<p id="bigText" onClick="SuperSizeMe(this);">Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.</p>

</body>
</html>

It is important to take a moment and examine what the code actually is doing. You might think
that the script accessing the style collection can therefore access the styles assigned to the ele-
ment no matter the source of said styles. However, that is not the case — the style collection can

540

Chapter 36: Dynamic HTML with CSS

only reference a local style embedded in the object’s tag via the script attribute. As such, the
following JavaScript statement would display a null value if run immediately after the preceding
document was loaded into the user agent:

alert(document.getElementById(’bigText’).style.fontSize);

FIGURE 36-1

Before the text is clicked, it has a medium-size font.

The style.fontSize property would be null because the bigText element does not contain
a style attribute. How, then, does the preceding example work if it doesn’t change the medium
value of font-size set in the <style> section? The answer is that it doesn’t need to change
the values in the <style> section; it simply sets values in the element’s style attribute, which
has precedence over the styles in the <style> section.

Of course, if there were a value for an element’s style attribute, the style collection could be
used to determine it.

If you want to read the properties set in the <style> section, you must use one of two
methods — one for IE browsers and another for Mozilla browsers. IE has an object property
named currentStyle, while Mozilla browsers have a window objects property — specifically,
window.getComputedStyle.

541

Part III: Controlling Presentation with CSS

FIGURE 36-2

After the text is clicked, it now has an xx-large font.

Use of the IE property is straightforward: Find the object via its id attribute and then use the
property to return the style property’s value, as in the following code.

obj = document.getElementById(id);
value = obj.currentStyle[’fontSize’];

Note that the style property is given in the ‘‘omit hyphen’’ style — that is, fontSize instead of
font-size.

The Mozilla method has an extra step because its property returns a collection that must be
parsed for the desired property. The parsing is done via the getPropertyValue()method,
as shown here:

obj = document.getElementById(id);
objstyles = window.getComputedStyle(obj,null);
value = objstyles.getPropertyValue(’font-size’);

Notice that the Mozilla method uses the standard CSS name for properties, not the ‘‘omit
hyphen’’ name. In either case, at the end of the code, the variable value would hold the value
of the font-size property.

542

Chapter 36: Dynamic HTML with CSS

You could combine these methods into a single function by adding a bit of browser detection.
The following listing shows a sample function that, given an object id and the ‘‘omit hyphen’’
and normal CSS property name, will return the value of the property:

// Return the value of CSS propName for element
// with given id
function getStyleVal (id, propName) {
// Can we do this at all? (getElementById available)
if (obj = document.getElementById(id)) {

// Is currentStyle available (IE)
if (obj.currentStyle) {
// Convert property name to IE format
if (propName.indexOf("-") != -1) {
hyp = propName.indexOf("-");
propName = propName.substr(0,hyp) +

propName.charAt(hyp+1).toUpperCase() +
propName.substr(hyp+2);

}
return obj.currentStyle[propName];

}
// Is getComputedStyle available (Mozilla)
if (window.getComputedStyle) {

compStyle = window.getComputedStyle(obj,null);
return compStyle.getPropertyValue(propName);

}
} // End If obj=document.getElementById
// Else return a blank string
return "";

}

Note that the function checks whether the browser supports document.getElementById (it
will if it is a modern browser) before doing anything. It then determines whether the IE or
Mozilla method is available and acts accordingly to return the property value. Along the way, it
also converts the property name, if necessary, to deal with IE’s preferred format. Figures 36-3
and 36-4 show the function running in IE and Firefox, respectively, on a document that contains
the following code:

<style type="text/css">
#bigText { font-size: medium;}

</style>
...
<p id="bigText"
onClick="alert(getStyleVal(’bigText’,’font-
size’));">Lorem ipsum dolor sit amet, consectetur
adipisicing elit, ...

When the paragraph text is clicked, a JavaScript alert box pops up and shows the value of the
paragraph’s font-size property.

543

Part III: Controlling Presentation with CSS

FIGURE 36-3

The getStyleVal function is used to show the value of a paragraph’s font-size property in
Internet Explorer.

FIGURE 36-4

The getStyleVal function is used to show the value of a paragraph’s font-size property in Firefox.

544

Chapter 36: Dynamic HTML with CSS

Note
Notice that the getStyleVal function returns an absolute font size, in points, when run in Firefox.
Because of the nature of the functions to return the values, they may vary in format from the values
used to set properties in the actual styles. For example, you might set a color to orange via a value like
#FFA500, while the JavaScript function returns orange. Or, as in the example in the previous screen
shots, the absolute font size is returned instead of the relative setting of medium. �

Why, then, can’t you use these two methods to also manipulate styles? Because these methods
are read-only, you can retrieve the value of style properties using these methods, but you can’t
set properties with them. You can set the value of style properties directly, as shown in the
beginning of this section.

Useful CSS Manipulation
Earlier examples showed how you can manipulate the font properties of elements in a docu-
ment. Although such manipulations can be helpful, more involved manipulations of CSS using
JavaScript can be even more useful. This section shows a few examples to get you started.

Hiding and showing text
With CSS and JavaScript, it is fairly trivial to alternately show and hide text. This can be used
for a variety of purposes, such as drop-down menus or hiding text until a user decides to reveal
it. For example, consider a list of questions and answers. A user of the site might not want to
see the entire list of answers, but may want to selectively reveal a few. Using the CSS display
property, you can write a script to enable this behavior.

Consider the following code, which hides the answer until any portion of the question is clicked.
If the question is clicked a second time, the answer is again hidden. Figure 36-5 shows the
answer in its hidden state, and Figure 36-6 shows the answer revealed after the ‘‘Q’’ is clicked.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Hide and Seek Text</title>
<style type="text/css">

/* Initially hide all the questions */
.hidenseek { display: none;}
/* Question and answer display styles */
.Q { font-size: xx-large;

padding-bottom: 0;
margin-bottom: 0;
cursor: pointer;}

.Qtext { margin-left: 20px;
margin-top: 0;
padding-top: 0;}

545

Part III: Controlling Presentation with CSS

.A { font-size: xx-large;
padding-bottom: 0;
margin-bottom: 0;
clear: left;}

.Atext { margin-left: 20px;
margin-top: 0;
padding-top: 0;}

</style>
<script type="text/JavaScript">
// Alternately reveal or hide the element
function hidenseek(id) {

obj = document.getElementById(id);
// If the style is blank, it hasn’t been set yet
// and we can assume the element is hidden
if ((obj.style.display == "") ||

(obj.style.display == "none")) {
obj.style.display = "block";

} else {
obj.style.display = "none";

}
}
</script>

</head>
<body>
<div onClick="hidenseek(’A1’)"><p class="Q">Q:</p>
<p class="Qtext">What kind of equipment and peripherals do I need to
bring to the LAN event?</p>
</div>
<div id="A1" class="hidenseek">
<p class="A">A:</p>
<p class="Atext">You will need to bring the following (minimum)
items: your computer (minumum P4 with 1GB of RAM and a high-end
video card), a monitor (no larger than 19"), keyboard, mouse, a
surge protector, and a CAT-5 network cable at least 5’ long. Do not
bring anything that is not listed herein, or attempt to bring and
use more than one computer.</p>
</div>
</body>
</html>

This example operates by using a JavaScript function that reads the value of an object’s display
property and sets the property to the opposite of its current value — revealing a hidden element
or hiding a visible one. The function is called via an onClick handler attached to the div ele-
ment that contains the question. The function call includes the id of the matching question so
the function knows what element to act upon (in this case ‘‘A1’’).

As previously mentioned, you can use this technique for a variety of purposes. You simply hide
the elements you wish to start hidden (using a value of none for the elements’ display property)
and use a function call — tied to buttons or other events — to show and optionally toggle the
visibility of those elements.

546

Chapter 36: Dynamic HTML with CSS

FIGURE 36-5

The answer to the question starts out in a hidden state.

FIGURE 36-6

If the Q (or any part of the question text) is clicked, the answer is revealed. Clicking again hides the answer.

547

Part III: Controlling Presentation with CSS

Picture zooming
Another common use for such CSS effects is to zoom images from thumbnails to their full size.
This technique is used often in picture galleries and on other pages where showing a full-size
image is desirable but prohibitive.

The technique is similar to the techniques already shown in this chapter — a JavaScript event
triggers a script to change CSS properties of certain elements. In this case, the script changes the
display property of an image thumbnail and a full-size image. A sample document with such a
script is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Picture Zoom</title>
<style type="text/css">
.zoom { display: none;

float: left;}
.thumb { display: block;

float: left;}
.text { float: left;

padding-left: 20px;}
</style>
<script type="text/JavaScript">
function PicZoom(id) {

pic = document.getElementById(id);
thum = document.getElementById("T"+id);
if ((pic.style.display == "") ||
(pic.style.display == "none")) {
pic.style.display = "block";
thum.style.display = "none";

} else {
pic.style.display = "none";
thum.style.display = "block";

}
}
</script>

</head>
<body>
<div id="1" class="zoom"><p><img src="ashley.jpg"
width="428" height="568" alt="Ashley"
onMouseOut="PicZoom(1);" /></p></div>

<div id="T1" class="thumb"><p><img src="ashley-thumb.jpg"
width="171" height="227" alt="Ashley"
onMouseOver="PicZoom(1);" /></p></div>

<div class="text" style="float:left;"><p>For the most wild, yet
most homely narrative which I am about to pen, I neither expect
nor solicit belief. Mad indeed would I be to expect it, in a case
where my very senses reject their own evidence. Yet, mad am I
not --and very surely do I not dream. But to-morrow I die, and

548

Chapter 36: Dynamic HTML with CSS

to-day I would unburden my soul. My immediate purpose is to place
before the world, plainly, succinctly, and without comment, a
series of mere household events. In their consequences, these
events have terrified --have tortured --have destroyed me. Yet I
will not attempt to expound them. To me, they have presented
little but Horror --to many they will seem less terrible than
baroques. Hereafter, perhaps, some intellect may be found which
will reduce my phantasm to the common-place --some intellect
more calm, more logical, and far less excitable than my own,
which will perceive, in the circumstances I detail with awe,
nothing more than an ordinary succession of very natural causes
and effects.

</p></div>
</body>
</html>

The images, thumbnail and full-size, are embedded in div elements for formatting and flexibil-
ity purposes. The thumbnail div initially has its display property set to block so it is visible.
Conversely, the full-size image div initially has its display property set to none so it is not
visible. The thumbnail tag includes an onMouseOver event to call the PicZoom()script
when the mouse is placed over the image. The script reverses the display property of the
thumbnail and full-size image div elements, making the full-size image visible and hiding the
thumbnail. The mouse remains in position, now over the full-size image. When the mouse is
moved off the image, an onMouseOut event in the full-size image tag calls the script again, set-
ting the display properties back to their original settings to hide the full-size image and reveal
the thumbnail.

This action can be seen in Figure 36-7, which shows the document in its beginning state, and in
Figure 36-8, which shows the full-size image revealed, and the thumbnail hidden.

Note
As with most examples in this chapter, many methods can be used to create the image zoom effect. Some
methods place both images on one large image and move the image around a ‘‘frame’’ to display one or
the other, as necessary. Another method is to change the src attribute of the tag so it displays the
desired image. There are also complex, layered solutions, changing the z-index value of the concerned
elements. Don’t be afraid to play with your own solutions as well. �

Menu buttons with rollovers
All the previous examples in this chapter use JavaScript to manipulate CSS to achieve various
effects. So far, we have neglected the CSS anchor pseudo-classes, which can achieve similar
effects.

The CSS anchor pseudo-classes are listed in Table 36-1.

The pseudo-classes are typically used to style elements as dynamic anchor elements. Using
:hover, for example, you can dynamically change an element as the mouse passes over
it — just like normal HTML anchors do.

For instance, the following document uses :hover to change the styling of anchors in table cells
as the mouse passes over them. The effect, shown in Figure 36-9, is similar to dynamically styled
menus driven by JavaScript.

549

Part III: Controlling Presentation with CSS

FIGURE 36-7

The document begins with the thumbnail visible and the full-size image hidden.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Pseudo Class Menus</title>

<style type="text/css">
.nav tr td { border: 1pt solid black;}
.menu { color: black;

background-color: white;
text-transform: none;
text-decoration: none;}

.menu:hover { color: white;
background-color: black;
text-transform: uppercase;
text-decoration: none;}

.menucase { width: 100px;}
</style>

</head>
<body>
<div class="menucase">
<table border="0" width=100%" class="nav">

550

Chapter 36: Dynamic HTML with CSS

<tr><td>Home</td></tr>
<tr><td>Products</td></tr>
<tr><td>Services</td></tr>
<tr><td>Support</td></tr>
<tr><td>About</td></tr>

</table>
</div>
</body>
</html>

FIGURE 36-8

When the mouse is placed over the thumbnail image, the full-size image is revealed.

TABLE 36-1

CSS Anchor Pseudo-Classes

Pseudo-Class Use/Effect

:link Formats the element(s) matched in the attached selector as unvisited links

:visited Formats the element(s) matched in the attached selector as visited links

:hover Formats the element(s) matched in the attached selector when the mouse
hovers over them

:active Formats the element(s) matched in the attached selector as active links

551

Part III: Controlling Presentation with CSS

FIGURE 36-9

The pseudo-classes can be used to create dynamic menus as you move the mouse over the menu
items they highlight.

Note that although the technique of using pseudo-classes for such effects is very popular, it does
disregard the best practice of separating behavior and presentation. This example is shown for
completeness, but it is generally better to go the JavaScript route than CSS pseudo-classes for
this type of effect.

Tip
Keep in mind that this technique can be used in conjunction with most elements. However, only the anchor
tag can be formatted with the anchor pseudo-classes — use other elements to format the anchor tags within
the document accordingly. �

Summary
This chapter covered dynamic content and CSS. You learned how to use JavaScript to modify
an element’s underlying CSS for a variety of effects and how CSS pseudo-classes can be used to
achieve dynamic effects. The next chapter covers how to use CSS to define pages for printing
before we venture into niche CSS topics in the last part of the book (Chapters 38 through 41).

552

Media Styles and
Defining Documents
for Printing

IN THIS CHAPTER
Understanding CSS

Media Types

Setting Up Documents for
Printing

Creating a Multimedia
Document

The Web was originally designed to bring printed media to the com-
puter screen. Paragraph elements, list elements, and tables were all
designed to provide adequate vehicles for approximating documents

normally found in print.

As times have changed, this situation has somewhat reversed. Now docu-
ments that originated on the Web are being formatted for the printed page.
This phenomenon is especially true for such documents as e-commerce
invoices, calendars and events, and documents of directions — whether they
be do-it-yourself instructions or directions to a popular venue.

Of course, printed documents are not the only secondary destination for
Web-originated documents; Web documents are also being made available
to aural (speech only) devices, presentation and handheld devices, and
low-resolution Web browsers (such as WebTV).

Thankfully, CSS has several mechanisms for formatting a document for these
various media types. This chapter concentrates on the print media type, but
many of the techniques discussed translate to other media types as well.

Understanding CSS Media Types
Table 37-1 lists the various media types supported in CSS.

Note
Because of the rapidly evolving deployment of Web documents to other media
types, the preceding list (specified in CSS2) is not designed to be all-inclusive.
The list is amended from time to time and will continue to grow as Web
documents continue to be deployed in other formats. �

553

Part III: Controlling Presentation with CSS

TABLE 37-1

CSS Media Types

Media Type Intended Destination/User Agent

all Suitable for all devices

aural Intended for speech-capable user agents and synthesizers

Braille Intended for Braille tactile feedback devices

embossed Intended for paged Braille printers

handheld Intended for handheld devices (typically small screen, monochrome, limited
bandwidth)

print Intended for paged, opaque material and for documents viewed onscreen in
print preview mode

projection Intended for projected presentations, such as projectors or print to
transparencies

screen Intended primarily for color computer screens

tty Intended for media using a fixed-pitch character grid, such as teletypes,
terminals, or portable devices with limited display capabilities

tv Intended for television-type devices (low resolution, color, limited-scrollability
screens, with sound available)

Specifying media types
You have several ways to specify that a style, or group of styles, should be used only for a
specific media type. The following sections detail each method.

Note
If no media type is specified in a document, the default of ‘‘all’’ is assumed and all user agents try to
render the document according to its CSS code. If you intend your document to be displayed only on
computer-type devices, ensure that you set all of your document’s styles to the screen media type using
the methods outlined in the next few sections. �

Specifying one style’s media type
The @media rule can be used to specify that a single style definition applies only to specific
media type(s). This rule has the following syntax:

@media <media_type(s)> { definition }

554

Chapter 37: Media Styles and Defining Documents for Printing

For example, to specify that a particular definition is to be used with print media only, you could
use code similar to the following, which has been indented for legibility:

@media print {
body { background-color: white;

color: black;
}

}

You might have noticed the mention of media types (plural) in the preceding definition of the
@media rule. This is because you can specify several media types, each separated by a comma,
in the @media definition. For example, you might choose to specify the same style for both print
and handheld media, using code similar to the following:

@media print, handheld {
body { background-color: white;

color: black;
}

}

Specifying a group of styles’ media type
The @media rule is not limited to specifying one style’s media type; you can place as many styles
as you like within the @media rule’s brackets. For example, consider the following code, which
specifies that two styles are meant for print media:

@media print {
body { background-color: white;

color: black;
}

.highlight { background-color: black;
color: white;

}
}

The style element (style) supports a media attribute that can be used to specify that all the
styles encapsulated within the element are of a particular media type, or types. The style
element has the following format:

<style type="text/css" media="<media_type(s)>">
... style definitions ...
</style>

Note that the media attribute can be used to specify a single media type or a comma-separated
list of multiple types.

You can use either of these methods to specify the media for entire blocks of styles, and create
multiple media blocks within the same style block. However, it is generally easier to create
groups of media-specific styles in external files and use the link element to link each into your
document. This technique is outlined in the next section.

555

Part III: Controlling Presentation with CSS

Specifying an external style sheet’s media type
If you choose to place your media-specific styles in an external file, you can use the link element
(link) to attach one or more of the files into your document. The link element has the
following syntax:

<link rel="stylesheet" href="<css_file>" type="text/css"
media="<media_type>" />

For example, if you have a style sheet named printed.css that you intend to use as print
media instructions for a document, you could use a link element similar to the following:

<link rel="stylesheet" href="printed.css" type="text/css"
media="print" />

Note
The link element’s href argument requires a full path to the specified CSS file. For example, if
your CSS files are stored in a directory named ‘‘styles,’’ you should specify something similar to
styles/printed.css in the preceding example. �

You can also use the CSS @import rule to specify an external style sheet. The @import rule has
the following syntax:

@import url("<stylesheet>") <media_type>;

For example, the following code imports an external style sheet named printstyles.css and
designates its media type as print:

@import url("printstyles.css") print;

Keep in mind that the @import rule is a CSS command and must appear within an appropriate
style section within your document.

Setting Up Documents for Printing
Each media type has additional properties to help define aspects of its medium and how doc-
uments using that type should be handled and rendered; and covering all the media types is
beyond the scope of this book. In addition to the screen media type, however, print media is the
most frequently used media type for Web documents.

This section covers the properties and methods available for print media.

The page box formatting model
If you’ve ever worked with a desktop publishing platform using software such as Quark XPress,
InDesign, or PageMaker, you’re probably familiar with the concept of a page box, within

556

Chapter 37: Media Styles and Defining Documents for Printing

which fits everything that must appear on a page. Even if you haven’t worked with desktop
publishing software, you’ve probably seen precursors to the HTML/CSS box formatting model in
word-processing packages you’ve used.

When you work in a word-processing or desktop publishing environment, you work with finite
page sizes and page margins. The CSS page box formatting model is an attempt to replicate this
for browser-based media. The page box model is based on the CSS box model, as shown in
Figure 37-1.

Figure 37-1 simply extends the familiar CSS box model to reveal two major areas:

� The page area contains all of a page’s elements.

� The margin area surrounds the page area. When a page area size is specified, the margins,
if any, are subtracted.

On top of the page box, the model is expanded still further to account for the difference between
continuous media, as represented by a browser, and paged media, which consists of discrete and
specific page entities. This expansion is represented by the visual formatting model, which allows
transfer of the continuous media as seen in a Web browser to an actual sheet of paper or trans-
parency.

Defining the page size with the @page rule
In CSS, you define your desired page size using the @page rule. The @page rule defines which
pages should be bound to the definitions within the rule. You then use a page property within
a style element or attribute to indicate to which page a specific element belongs.

Note
Unfortunately, browser support has still not caught up to this particular CSS rule, and support is largely
nonexistent at this point. Microsoft actually does provide support for this rule, but only through the
MSHTML component, which application developers use as a browser widget within their applications.
Internet Explorer itself does not include support for this rule in its printing templates, which are used for
print previewing and printing Web documents from the browser. �

The following listing shows an example of @page use:

@page printed {
size: 3in 3in;

}
body, p {

page: printed;
}

In this listing, a page named printed is defined. Then the body and paragraph elements are
defined using printed as the value of the page property and should print according to the
specifications outlined in the @page rule.

557

Part III: Controlling Presentation with CSS

FIGURE 37-1

The CSS box model

Top

Bottom

Left Right

m
ar

gi
n-

le
ft

m
ar

gi
n-

rig
ht

bo
rd

er
-le

ft

bo
rd

er
-r

ig
ht

pa
dd

in
g-

le
ft

pa
dd

in
g-

rig
ht

margin-top

Content

margin-bottom

border-top

border-bottom

paddingpadding-top

padding-bottom

page edge
= margin edge

= border edge

= padding edge

= content

border

558

Chapter 37: Media Styles and Defining Documents for Printing

Note
The page name printed in the previous example is optional. If your document will use only one type of
page, you can omit the page name, as in the following:

@page {
size: 3in 3in;

}

Thereafter, any element defined as being print media will use the one, unnamed page definition. �

In CSS2, you can use page selectors to name the first page, all left pages, all right pages, or a
page with a specific name to which the rules apply. In the case of the previous listing, a named
page called printed was used.

Setting up the page size with the size property
The actual dimensions of the page are defined using the size property, which consists of two
values: one for the width and the other for the height. For example, the following definition sets
up an 81/2 by 11 inches page:

@page {
size: 8.5in 11in;

}

You can also use the following relative size values with the size property:

� auto — The default value set to whatever the target paper size is in the printer’s settings.
� landscape — Rotates the page and swaps the two measures. In the previous example, the

printed sheet would print at 11 inches wide by 8 1/2 inches long.
� portrait — Overrides the targeted media’s default settings to correspond with the

dimensions you set in the size property.

Setting margins with the margin property
You should be careful when using margins because they are the outermost layer of a page. If you
set the margins of a body element to three inches on either side, for example, be sure to adjust
the width of the body element as well, or your page will not format properly.

However, in theory, you should be able to set margins for the printed page without worrying
about the body text running off to one side of the browser when you neglect to set the width of
the page’s other elements. This is because margins can be set within the @page rule using the
margin properties in CSS. You can set the page margins using the margin property in the same
manner as you use it anywhere else, as shown here:

@page {
size: 8.5in 11in;
margin: .5in;

{

559

Part III: Controlling Presentation with CSS

Cross-Ref
The CSS margin properties are covered in Chapter 32. �

When they are set within the @page rule (currently supported by Opera only), the margin set-
tings should be ignored when being viewed on the Web. However, as mentioned earlier, at the
time of this writing, browser support for this feature is weak and results can be unpredictable.

Including crop and cross marks
If your document is destined for publication, it might be useful to include crop marks or cross
marks. Crop marks look like plus signs (+) and are printed on the edge of page margins, show-
ing a printer where to cut the page. Cross marks are other symbols printed near the edge of
pages that enable printers to align numerous pages.

The marks property controls the printing of crop and cross marks and has the following syntax:

marks: <crop> | <cross> | <none> | <inherit> ;

Note
User agent support for the marks property is virtually nonexistent. �

Controlling page breaks
In the event that your users may want to print your Web pages, you may want to avoid inappro-
priate page breaks. The three page-break properties can help better control page break behavior:

� page-break-before — Specifies how a page should break before a specific element, and
on what side of the page the flow should resume

� page-break-after — Specifies how a page should break after a specific element, and
on what side of the page the flow should resume

� page-break-inside — Tells the browser how to break a page from within a box ele-
ment. Actual support for this property is limited to Opera. Neither Internet Explorer nor
Netscape-based browsers support this property.

Using the page-break-before and page-break-after properties
The page-break-before and page-break-after properties specify how a page should break
before or after a specific element, depending on which of the two properties you use, and on
what side of the page the flow should resume. The CSS2 documentation provides some guide-
lines for page breaks:

� Page breaking should be avoided inside table elements, floating elements, and block ele-
ments with borders.

� Page breaking should occur as few times as possible. In other words, it’s not a good idea to
break a page with every paragraph.

� Pages that don’t have explicit breaks should be approximately the same height.

560

Chapter 37: Media Styles and Defining Documents for Printing

Opera offers the best support for these properties. The Gecko browsers provide partial support,
and support is all but missing from Internet Explorer. Table 37-2 lists the values that can be
used with either the page-break-before or page-break-after property.

TABLE 37-2

Page-Break-Before/After Property Values

Value Description

inherit Specifies that the value should be inherited from the parent

auto Allows the user agent (browser) to insert page breaks on an as-needed basis

avoid Tells the user agent to avoid inserting page breaks before or after the current
element

left Forces one or two page breaks to create a blank left page

right Forces one or two page breaks to create a blank right page

always Tells the browser or user agent to always force a page break before or after the
current element

’"’ This is not a value found in the spec but a value that can be used in Internet
Explorer; it specifies that no property value should be used and, therefore, that no
page break should be inserted before the current element.

Figure 37-2 shows the effects of a badly formatted page break. Notice how the heading remains
on one page while its text flows to the next.

You can set the page-break-before or page-break-after property in a p element, for
example, to force a page break before or after all p elements. You probably wouldn’t want to
actually do that, but you can create a class selector rule and apply the rule to the first or last
paragraph of a page, depending on your needs, like this:

.pagebreak {
page-break-before: always;

}

You can then use this class with elements, such as with specific h2 elements as shown in the
following code, which fixes the odd page break shown earlier in Figure 37-2:

<h2 class="pagebreak">Spa Services</h2>

The fixed break is shown in Figure 37-3.

Note
Page breaks cannot be used within positioned elements. For example, if you have an absolutely positioned
div element with a child p element, you cannot assign a page break to the p element. �

561

Part III: Controlling Presentation with CSS

FIGURE 37-2

A bad page break separates text from its heading.

Using the page-break-inside property
You can also use a page-break-inside property to handle page breaks within elements (for
example, if you have a very long div element). However, in practice, most browsers have little
to no support for this property.

Handling widows and orphans
Widows and orphans are undesirable in typography, but CSS has provided an opportunity to
reduce their impact. Widows and orphans refer to broken text, such as when a page break sev-
ers a paragraph, leaving one line from the paragraph on either side of the break. A widow is a
spurious line at the top of a page, left over from the paragraph on the previous page. An orphan
is similar, except it consists of a spurious line at the bottom of a page, where the remainder of
the paragraph occurs on the next page. Again, it can be unsightly if a section or paragraph starts
at the very end of a page and the page break results in a single line being left at the end of the
previous page.

562

Chapter 37: Media Styles and Defining Documents for Printing

FIGURE 37-3

Adding a page break directive can indicate where a page should break, avoiding problems.

The two CSS properties relevant to widows and orphans, are conveniently named, respectively,
widow and orphan.

Note
These two properties have virtually no support beyond the Opera browser. �

Both of these properties have similar syntax:

widow: <integer or inherit>;
orphan: <integer or inherit>;

You name the property, and then supply the value, which can be either an integer or the explicit
value inherit, the latter of which means that the element named in the style rule inherits the
properties of its parent. The following sets a p element’s widow to a minimum of three lines.
This means that the bottom of the page must have a minimum of three lines when printing:

p { widow: 3; }

563

Part III: Controlling Presentation with CSS

An integer value for either property specifies that the top (widow) or bottom (orphan) should
have the given number of lines — if that is not possible, the entire element moves to the
next page.

Preparing documents for double-sided printing
To set up pages for printing double-sided documents, you must account for different margins
on each side of a page. One method to handle this would be to manually set margins for each
element, anticipating on which side of the page each would appear. Thankfully, there is an easier
way. You can use the pseudo-classes :left and :right to set the margins of each differently.
For example, consider the following:

@page :left {
margin-left: .5in;
margin-right: .25in;

}
@page :right {
margin-left: .25in;
margin-right: .5in;

}

Note
Of course, like many advanced CSS features, user agent support for the :left and :right pseudo-classes
is almost nonexistent. �

You can also use the :first pseudo-class to specify different values for the first page of a docu-
ment with code similar to the following:

@page {
margin: 1in

}
@page :first {

margin-top: 3in
}

The preceding code sets all the page margins to one inch, but the :first definition resets the
top margin of the first page to three inches.

Creating a Multimedia Document
No doubt you have run across several documents on the Web that have corresponding ‘‘print
friendly’’ versions. These documents tend to be informational in nature — recipes, maps and
directions, do-it-yourself instructions, invoices, and so on. The screen media representations of
the documents typically include all the usual elements — graphical headings, several advertise-
ments, and colorful layouts — not entirely suitable for printing the key information embedded
in the document.

564

Chapter 37: Media Styles and Defining Documents for Printing

As such, many of these documents include a print friendly link when displayed on the Web.
Clicking that link displays a new page with the important information, but devoid of the
superfluous elements and information. Sometimes the print friendly page includes additional
information necessary, or information just simply nice to have.

Using CSS media descriptors and relying on the CSS cascade and inheritance properties, you can
use one document for both the screen and print versions. An example of this concept follows.

The online (screen media) document
The following listing and Figure 37-4 show a typical online page with information (driving
directions) that would be advantageous to print:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<!-- Breadcrumb and utility scripts -->
<script type="text/JavaScript" src="/functions.js">

</script>
<style type="text/css">

body { background-color: black; }
.main { width: 768px;
height: 1024px;
padding: 20px;

text-align: center;
background-color: #222222;
background-image:url(/images/junglepool.jpg);
background-position: center center;
background-repeat: no-repeat;

border: 3pt #222222 solid; }
.breadcrumbs { font-size: small;
text-align: left;
padding-left: 10px;
background-color: #CCCCCC;
height: 1.5em; }
.heading { background-color: #CCCCCC;
text-align: left;
margin: 25px 0px; }
/* Heading for printing - hide it for now */

.printheading { text-align: center;
margin-bottom: 50px;
display: none;
visibility: hidden; }
.content { text-align: left;
font-size: 9pt;
background-color: #CCCCCC;
margin: 15px;

margin-bottom: 0px;
padding: 20px; }

565

Part III: Controlling Presentation with CSS

.center { text-align: center; }

.mleft { text-align: left; }

.mright { text-align: right; }

.mcenter { text-align: center; }

.footer { margin-top: 25px;
font-size: small;
text-align: center;
background-color: #CCCCCC;
height: 1.5em; }
</style>

<!-- Print friendly (print media) style sheet -->
<link rel="stylesheet" href="/printstyles.css"
type="text/css" media="print" />

<title>Oasis of Tranquility - Directions</title>
</head>
<body>
<div class="main">

<div class="breadcrumbs">
<script type="text/JavaScript">

breadcrumbs();
</script>

</div>
<div class="printheading">

<h1>The Oasis of Tranquility</h1>
</div>
<div class="heading">

<table border="0" width="100%">
<tr>
<td><img src="/images/OasisHeader.gif" width="475px"
height="161" alt="The Oasis of Tranquility Header" /></td>

<td>
<table border="0">

<tr>
<td class="mleft">Services</td>

<td class="mright">
Facilities

</td>
</tr><tr>
<td colspan="2" class="mcenter">

Calendar/Appointments
</td>
</tr><tr>
<td colspan="2" class="mcenter">

Consultants/Staff
</td>
</tr><tr>
<td class="mleft"><a

566

Chapter 37: Media Styles and Defining Documents for Printing

href="aboutus">About Us</td>
<td class="mright">

Contact/Directions
</td>
</tr>
</table>
</td>
</tr>
</table>
</div>
<table border="0" width="95%">

<tr><td class="content">
<h3>Directions from the International Airport</h3>
<p>

Start out going NORTH on PENA BLVD. (0.2mi)
Go STRAIGHT toward TERMINAL EAST. (2.0mi)
Stay STRAIGHT to go onto PENA BLVD. (3.4mi)
Take the E-470 TOLLWAY N exit- EXIT 6B-
toward FORT COLLINS. (0.8mi)
Merge onto E 470N (Portions toll). (14.7mi)
Take the COLORADO BOULEVARD exit- EXIT 43. (0.4mi)
Turn LEFT onto COLORADO BLVD. (4.2mi)
Turn RIGHT onto E 120TH AVE / CO-128 W. (1.5mi)
End at 1283 E 120th Ave - Denver, CO 80233-5728, US

</p>
<p class="center" >

<img src="/images/AirportMap.jpg" width="381" height="255"
alt="Directions from airport" />

</p>
</td></tr>
</table>
<div class="footer">

<p>
Services

Facilities

Calendar/Appointments

Consultants/Staff

About Us

Contact/Directions
</p>
</div>
</div> <!-- Main -->
</body>
</html>

567

Part III: Controlling Presentation with CSS

FIGURE 37-4

Most Web pages contain many elements that are disadvantageous to print, such as headers,
graphics, backgrounds, and special features.

As you can see, a handful of superfluous elements on the page aren’t only unnecessary to print,
but are downright undesirable. Such elements include the following:

� Navigational aids

� Page background colors and graphics

� Graphical headers — image and stylistic text

� Footer navigation links

It is best to reformat or remove these elements from the printed page.

Reformatting the page
Because most of the elements are attached to styles, reformatting the page is fairly trivial. Using
the CSS cascade and inheritance properties, you can create additional styles for print media.
If the styles are added to the end of the style list, they will take precedence over the previous
styles. However, when designated for print media, they will only come into play when printed.

568

Chapter 37: Media Styles and Defining Documents for Printing

For example, consider the following styles, created for all elements in the document that need
different styles when printed. The code shows the styles created to modify elements for printing:

@page { size: 8.5in 11in;}
body { background-color: white;}
.main { border: none;

background-color: white;
background-image: none;}

.breadcrumbs { display: none;}

.heading { display: none;
visibility: hidden;}

.heading-content { display: none;}

.printheading { display: block;
visibility: visible;}

.content { background-color: white;}

.footer { display: none;
visibility: hidden;}

As you can see, there isn’t a one-to-one correlation between the styles in the original document
and the print media styles, nor the properties of either. The print styles only need to include
styles and individual properties needing changes. For example, the print styles concentrate on
doing the following:

� Removing images

� Removing borders

� Removing backgrounds

� Hiding irrelevant elements (headers, footers, navigation elements)

� Making desirable print elements previously hidden visible

The last bullet in this list is important — you may have elements that you don’t want to print,
but which contain information you don’t want to lose. In the example, I don’t want to print the
graphical header but would like to print the name of the website (‘‘The Oasis of Tranquility’’). To
achieve this effect, I embed a special div in the document, give it a class of printheader, and
use corresponding styles to hide it by default. The print styles then reverse the visibility, hiding
the graphical header and revealing the plain text header.

The print styles are placed in a separate style document and linked into the main HTML docu-
ment and to the end of the embedded styles using a link element, similar to the following:

<link rel="stylesheet" href="/printstyles.css"
type="text/css" media="print" />

Note
In this example, the styles are included in an external style sheet for manageability. They could also be
embedded within the document using an @media rule. �

It’s important that the print media styles be included at the end of the style list to ensure that the
style inheritance is correctly followed. You might have noticed that the styles embedded within

569

Part III: Controlling Presentation with CSS

the document are not coded for any particular media; this means they are valid for print media
as well. If the print-specific styles did not appear at the end of the style list, the general styles
could override them.

Tip
When creating media-specific styles for documents, it is generally a good idea to mark every group of styles
for the media they should support. �

Summary
This chapter covered how to use media styles to format a document for printing. You learned
how to best define the page, adjust page breaks, and combine media types in one document.
The next chapter wraps up Part III of the book, the core CSS coverage. The following part
(Chapters 39 through 41) covers more niche CSS topics.

570

The Future
of CSS: CSS3

IN THIS CHAPTER
Modularity

Using CSS3 Properties Today

More Control over Selections

Revisiting the Brass Ring of
CSS: Rounded Corners

For the development of Web content, Cascading Style Sheets (CSS)
have become the inseparable sibling of HTML. Without CSS, design-
ers cannot create elaborately designed documents; without HTML,

designers cannot create any platform for documents.

Introduced in late 1996, CSS level 1 brought a whole new design perspec-
tive to the Web. Later, in mid-1998, CSS level 2 was responsible for a new
dimension of Web content, positional element, a third dimension of ele-
ments, media types, and more. In 2005, CSS level 2.1 was released to fix
existing bugs in CSS but did not provide any evolutionary changes to Web
design.

CSS level 3, currently in development, promises another leap forward on the
Web, introducing new properties and values that bring the current realm of
the Web that much closer to printed medium. Although full coverage of the
new version could fill a book of its own, this chapter provides an overview
of some of the more globally anticipated features of CSS level 3.

Note
As mentioned, CSS3 is currently still in development. Because this
chapter was written based on the current draft specification, it is
likely that some of the material presented here will change. Visit the
W3C working site to follow the development of this new version:
www.w3.org/Style/CSS/current-work#table. �

Just Better
Much of the work going into this new version of CSS is to make the speci-
fication more exacting, to better specify how dynamic elements should be
dynamic and how static elements are static. Although CSS is thought of as
being fairly mature, the fact that the CSS specification is only entering its

571

Part III: Controlling Presentation with CSS

fourth revision should be kept in mind — there is still plenty of room in the specification for
alternate interpretations. A big part of the CSS2.1 specification was to close various holes and
idiosyncrasies in CSS2. Look for CSS3 to continue this effort.

Note
In theory, a more exacting specification should mean more consistent support for the specification. After
all, the specification should leave little doubt as to how the various properties should affect document
elements. Unfortunately, the actual implementation of the CSS3 specification remains in the user agent ven-
dor’s hands — hands that have proven to take a few liberties with specification interpretation. �

Modularity
CSS3 is being developed in a modular fashion, broken down into 26 distinct modules instead
of the monolithic structure of CSS past. The modules and their descriptions are provided in the
following table.

Module Content/Purpose

Syntax/Grammar A means to attach properties to a structured document

Selectors Describes the selectors used to marry properties to document
elements

Values and Units Specifies how values and units are described and used

Value Assignment/
Cascade/Inheritance

Describes how various properties interact and how the core
of CSS (cascade, inheritance, etc.) operates

Box Model/Vertical Describes how the box model of CSS operates, causing
element flow, floating elements, and providing a third
dimension for elements

Positioning Describes how elements are positioned differently from how
they would normally appear in a document

Color/Gamma/Color Profiles Describes the handling of color in CSS

Colors and Backgrounds Describes how element foreground and background colors
are handled

Line Box Model Describes the format of the line element box model

Text Describes the method of text handling in user agents

Fonts Describes the method of font handling in user agents

Ruby A draft describing methods of handling new styles of
typographic traditions

572

Chapter 38: The Future of CSS: CSS3

Module Content/Purpose

Generated Content/Markers Describes of how content is generated and markers are
displayed

Replaced Content Describes the definition and handling of replaced content

Paged Media Describes how documents should handle paged
media — headers, footers, etc.

User Interface Describes how the user interface should handle various states
and elements

Web Fonts Describes the use of fonts and better control over them

ACSS (Aural CSS) Describes methods of making stylized content more
accessible

Synchronized Multimedia
Integration Language (SMIL)

Describes how to make CSS and SMIL work together to
produce better multimedia

Tables Describes how table content should be implemented via CSS

Columns Describes how to use CSS to create flexible column layouts

Scalable Vector Graphics
(SVG)

Describes methods that can be used to produce dynamic,
scalable vector graphics

Math Describes how to apply stylistic conventions to mathematic
expressions

Behavioral Extensions to CSS
(BECSS)

Describes methods to attach behaviors (rather than styles) to
elements

Media Queries Describes methods of dynamically determining what styles,
from what source, should be applied

The reasoning behind breaking CSS into a modular structure is simple: It makes the project
much easier to manage. As the popularity of CSS increases, so does the user’s desire to extend
the capabilities of the standard. Using a modular structure provides a more efficient way of
extending features and capabilities while still being able to adequately manage the whole.

Using CSS3 Properties Today
For various reasons, some of the major user agents have implemented CSS3 properties, even
though the specification isn’t yet final. These user agents include the Firefox browser and
browsers that rely upon the Webkit framework, such as Mac Safari.

To maintain compatibility with other browsers and older versions of CSS, these browsers
implement CSS3 features by using unique property names. These property names use prefixes
such as –moz and –webkit, making the property definitions unrecognizable to other browsers.

573

Part III: Controlling Presentation with CSS

Unfortunately, support of CSS3 properties is sketchy at best, and the browsers are apt to use
property names that only resemble the actual CSS properties.

For example, all modern user agents support the border-<side>-color property to
CSS2.1 levels, whereas Firefox 3.1+ also supports the CSS3 level of this property, via the
–moz-border-<side>-colors property. The CSS3 specification enables the Web author
to use a range of colors in the –moz-border-<side>-colors definition to achieve unique
results.

Cross-Ref
See the section ‘‘Revisiting the Brass Ring of CSS: Rounded Corners,’’ later in this chapter for more informa-
tion on border colors and CSS3. �

To ensure that use of the browser-specific properties does not adversely affect documents, the
properties should appear in the following order:

1. Standard CSS2.1 format

2. Browser-specific CSS3 format

This enables all browsers to pick up the CSS2.1 property, ensuring that the non-CSS3 browsers
receive their property value(s), and then allows the CSS3-enabled browsers to receive their val-
ues, overwriting the CSS2.1 value.

For example, consider the border color example. If you wanted to infuse your documents with
that CSS3 property for bottom borders, you should use definitions similar to the following:

div { border-bottom-color: black; }
div { -moz-border-bottom-colors: #F9F9F9 #AFAFAF

#BFBFBF #CFCFCF
#DFDFDF #EFEFEF
#FFFFFF; }

These two definitions cover non-CSS3-enabled user agents as well as Firefox 3.1+ browsers that
support the extended property. As a result, non-CSS3 user agents will use black borders for div
elements while Firefox will use the extended definition resulting in the gradient.

Note
The website www.css3.info/ is a good source of information on CSS level 3, including current browser
support of its features. �

More Control over Selections
Not surprisingly, CSS3’s selector interface is much more robust than that of CSS2.1. The
new selector formats provide the capability to select almost any element in a document.
The new CSS3 selectors are summarized in the following table.

574

Chapter 38: The Future of CSS: CSS3

Selector Format Selects . . .

E[foo ˆ ="bar"] an E element whose ‘‘foo’’ attribute value begins exactly with
the string ‘‘bar"

E[foo$="bar"] an E element whose ‘‘foo’’ attribute value ends exactly with
the string ‘‘bar"

E[foo*="bar"] an E element whose ‘‘foo’’ attribute value contains the
substring ‘‘bar"

E:root an E element, root of the document

E:nth-child(n) an E element, the nth child of its parent

E:nth-last-child(n) an E element, the nth child of its parent, counting from the
last one

E:nth-of-type(n) an E element, the nth sibling of its type

E:nth-last-of-type(n) an E element, the nth sibling of its type, counting from the
last one

E:last-child an E element, last child of its parent

E:first-of-type an E element, first sibling of its type

E:last-of-type an E element, last sibling of its type

E:only-child an E element, only child of its parent

E:only-of-type an E element, only sibling of its type

E:empty an E element that has no children (including text nodes)

E:target an E element being the target of the referring URI

E:checked a user interface element E which is checked (for instance a
radio-button or checkbox)

E:not(s) an E element that does not match simple selector s

E ∼ F an F element preceded by an E element

Revisiting the Brass Ring of CSS:
Rounded Corners
As previously mentioned in this book, designers have been clamoring for the ability to provide
rounded corners to elements. As of this writing, the number of ways to do this without pure
CSS is numbered in the 50s. These methods use uniquely placed elements, special graphics,
and other optical tricks to simulate rounded corners. CSS3 simplifies the matter by providing

575

Part III: Controlling Presentation with CSS

rounded corner properties for block elements. As of this writing, Firefox 3.1+ supports rounded
corners. Besides rounded corners, Firefox also supports multiple-color borders, enabling design-
ers to make document elements have a unique and 3D appearance. For example, consider the
following code, and Figure 38-1, showing how the document renders in Firefox 3.5, thanks to
the –moz properties:

<html>

<head>
<style type="text/css">

div { clear: both;
width: 50%;
padding: 10px;
margin-bottom: 40px; }

#rounded { background-color: gray;
border: 1px solid black;
-moz-border-radius: 5px; }

#shadowed { background-color: white;
border: 3px solid black;
-moz-box-shadow: 5px 5px 5px #666;}

#colored { border-width: 8px;
border-style: solid;
-moz-border-bottom-colors: red yellow blue

yellow green;}

#gradient { border-width: 8px;
border-style: solid;
-moz-border-bottom-colors: #F9F9F9 #AFAFAF

#BFBFBF #CFCFCF
#DFDFDF #EFEFEF
#FFFFFF; }

#partial { border: 1px solid black;
-moz-border-radius-topleft: 5px; }

</style>
</head>

<body>
<div id="rounded">Rounded corners</div>
<div id="partial">One corner rounded (top-left)</div>
<div id="shadowed">Drop shadow</div>
<div id="colored">Colored border</div>

576

Chapter 38: The Future of CSS: CSS3

<div id="gradient">Gradient border</div>
</body>
</html>

FIGURE 38-1

CSS level 3 enables much more control over the components of elements, such as borders.

Note that the border color properties enable multiple colors to be defined. This allows borders
to take on a rainbow effect or a 3D appearance if a smooth gradient of colors is specified. In
addition, each side or corner of an element can be styled individually.

Summary
CSS level 3 has been in development since 1998. That has been plenty of time for the work
group behind it to witness how the Web has matured and what is necessary to help revolutionize
Web content.

Unfortunately, the CSS3 standard is still several years away from release; and even after the
release, designers will have to wait for user agent adoption of the standards, and then user adop-
tion of those new user agents. Nonetheless, it will be a welcome addition to the Web, providing
a whole new generation of design possibilities.

577

Part IV

Additional CSS Tools

IN THIS PART
Chapter 39
User Interface Styles

Chapter 40
Testing and Validating CSS

Chapter 41
CSS Tips and Tricks

User Interface Styles

IN THIS CHAPTER
Changing the Cursor

User Interface Colors

User Interface Fonts

In Part III of this book you learned how to use CSS to style and
format almost every part of an HTML document. However, there are
several additional, user agent-related elements you can affect with CSS.

This chapter shows you how to use styles on user interface elements — the
mouse pointer, system colors, and system fonts.

Changing the Cursor
The CSS cursor property enables you to specify what cursor type should be
displayed when the cursor is over a specific element. This property is used
like any other property, with a familiar format:

cursor: value;

The cursor property supports the values listed in Table 39-1.

The uri value takes the following familiar form:

url("uri_path_to_resource")

This value is unique in that it supports several values and can be followed
by a default value if none of the uri resources can be found or used. For
example, the following property definition defines two external pointer
files that should be used, and a fallback default of crosshair if those two
resources cannot be used for some reason:

cursor: url("angle.cur"), url("simple.cur"), crosshair;

581

Part IV: Additional CSS Tools

Note
Many general graphic editing programs and several specific programs can be used to create custom cursors.
Try searching Google for ‘‘create cursor file.’’ �

TABLE 39-1

Values for the Cursor Property

Value Description

auto The user agent displays an appropriate cursor for the current context.

crosshair The cursor is set to the shape of a simple crosshair (resembling a
narrow + sign).

default The cursor is set to the platform’s default cursor (typically an arrow).

pointer The cursor is set to a shape that typically indicates a link (typically a
pointing hand).

move The cursor is set to a shape indicating that something can be moved
(typically a four-pointed arrow).

e-resize, ne-resize,
nw-resize, n-resize,
se-resize, sw-resize,
s-resize, or w-resize

The cursor is set to a shape indicating that something can be resized
(typically a multi-headed arrow showing the direction(s) that an object
can be sized). The leading letters refer to the edge of the sizable
element that can be sized — ne-resize, for example, refers to an
element’s northeast (top-left corner) edge.

text The cursor is set to a text edit/insert cursor (typically an I-beam
cursor).

wait The cursor is set to a shape that indicates the user should wait
(typically an hourglass or clock image).

progress The cursor is set to a shape that indicates the computer is in the
process of doing an operation and the user might have to wait
(typically an hourglass or clock).

help The cursor is set to a shape indicating help is available, usually by
clicking the object under the cursor. (The shape is typically a pointer
with a question mark or a text balloon.)

<uri> The cursor is set to a shape stored in an external cursor resource.
This value supports multiple values in the form of a comma-separated
list — if the first entry is unavailable, the second is used, and so forth.

Although CSS provides resize cursors for every side and corner of an element, they are not
dynamic — as the cursor moves around the border of an element, the appropriate cursor will
not automatically appear. You must assign the appropriate cursor to elements that can use the
appropriate resize arrow.

582

Chapter 39: User Interface Styles

Figure 39-1 shows how the default arrow cursor can be changed to a hand cursor (pointer) for
the button, using the following code:

<image type="button" value="Button" style="cursor:pointer;" />

Tip
Just because you can change the cursor doesn’t mean you should. Graphical user environments rely on con-
sistency to increase user familiarity and comfort with their systems. If the cursor changes randomly in your
pages, you risk confusing and alienating users. �

FIGURE 39-1

A custom cursor

User Interface Colors
In addition to changing the cursor to system default cursors, you can also change your docu-
ment’s colors to match system colors. Table 39-2 lists the keyword values you can use with the
color and background-color properties to match colors in your document to the current
system colors.

583

Part IV: Additional CSS Tools

TABLE 39-2

System Color Keywords

Keyword Matches This System Color

ActiveBorder The border of the current (active) window

ActiveCaption The caption text of the current (active) window

AppWorkspace The background color of a multiple-document interface (usually the
background color of a document window)

Background The background color (not image) of the desktop

ButtonFace The face of button elements

ButtonHighlight The dark shadow area on the edge of 3D button elements

ButtonShadow The shadow area on the edge of 3D button elements

ButtonText The text of button elements

CaptionText The text in captions, size boxes, and scrollbar arrow boxes

GrayText Gray (disabled) text

Highlight Selected item(s)

HighlightText The selected text

InactiveBorder The border of an inactive window

InactiveCaption The caption of an inactive window

InactiveCaptionText The caption text of an inactive window

InfoBackground The background for tooltips

InfoText The text of tooltips

Menu The background of menus

MenuText The text of menus

Scrollbar The ‘‘gray’’ area of scrollbars

ThreeDDarkShadow The dark shadow for 3D elements

ThreeDFace The face of 3D elements

ThreeDHighlight The highlight color for 3D elements

ThreeDLightShadow The light color shadow for 3D elements

ThreeDShadow The dark color shadow for 3D elements

Window The window background (for nondocument windows)

WindowFrame The window frame

WindowText The text in windows

584

Chapter 39: User Interface Styles

These keywords can be used as you would any other color keyword, such as blue, red,
or green. For example, to set up a paragraph to mimic system menus — background and
text — you could use the following tag with its embedded styles:

<p style="background-color: Menu; color: MenuText">

FIGURE 39-2

A document with one system color scheme

A big advantage to these keywords is that they are dynamic. As system colors change, so do the
colors these keywords represent, so your document colors will match end users’ colors even
if they change. For an example of this effect, consider the following code and Figures 39-2
and 39-3, where the system color scheme changes between the figures (as referenced by the
extended menu):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>User Interface Colors</title>
<style type="text/css">

585

Part IV: Additional CSS Tools

div { padding: 0px 0px 0px 10px;
border: 1pt solid black;
width: 200px;
height: 300px;
background-color: Menu;}

div p { color: MenuText;}
</style>

</head>
<body>
<div>

<p>First Menu Item</p>
<p>Second Menu Item</p>
<p>Third Menu Item</p>
<p>Fourth Menu Item</p>
<p>. . .</p>

</div>
</body>
</html>

FIGURE 39-3

The same document with another system color

586

Chapter 39: User Interface Styles

User Interface Fonts
CSS has a handful of interface font keywords that can be used similarly to the user interface
color keywords to create documents that mesh with users’ system interfaces. The interface font
keywords set values of the font property. Table 39-3 lists the interface font keywords.

TABLE 39-3

Interface Font Keywords

Keyword Matches This System Font

caption Text on user interface elements

icon Labels on icons

menu Text in menus

message-box Text in dialog boxes

small-caption Text in small controls

status-bar Text in window status bars

Like the color keywords, the font keywords are dynamic — the font they represent will change
as the system fonts change.

Tip
Using the right combinations of user interface styles can give your document a look that’s virtually indis-
tinguishable from a user’s system interface. Keep in mind that your document must still behave like a Web
document if your audience approaches your document from a Web viewpoint. However, if your audience
views your document as an application, infusing it with more of a computer interface design would be the
better choice. In short, create a document and interface that will be familiar to your audience. �

Summary
In this chapter you learned about the CSS user interface styles and how they can be used to cus-
tomize a user agent’s pointer, colors, and fonts. Using these styles you can easily change what
the user interface of your document resembles. In the next chapter, you’ll learn how to test and
validate your CSS code.

587

Testing and Validating
CSS

IN THIS CHAPTER
Testing Syntax As You Create

Styles

A Word About Formatting

Validating CSS

Firefox Add-ons for CSS Editing

As you have seen in this book, HTML and CSS provide a yin and yang
approach to the content and formatting of Web documents. As such,
each depends on the other being complete, sturdy, and robust.

In Chapter 23 you saw the benefits of well-formed and validated HTML.
This chapter explores the other piece of the equation — well-formed and
validated CSS.

Testing Syntax As You Create
Styles
The best and easiest method to ensure that your CSS is valid is to check its
syntax as you create it. This means using a syntax highlighting, syntax check-
ing, and text auto-insertion CSS editor for even the first draft of your styles.

Syntax highlighting involves using different colors for different portions of
code. When editing CSS, for example, an editor might display the selector
portion of a style in green, the braces in white, the properties in red, and
the values in yellow. If a piece of the style is missing, the color of the pre-
vious element usually bleeds into the next section of the file. Using these
visual cues, you can easily see the various pieces of the whole and recognize
missing portions (such as a closing brace). These rudimentary editors also
include features like auto-indenting of code to help keep your code tidy and
easy to read. Figure 40-1 shows the popular Linux editor vim.

Syntax checking involves actively checking code as you type it and
sometimes offering to auto-insert the next required piece for you. When
editing CSS, for example, an editor might pop up a completion dialog box
after you type a selector and its trailing space. The dialog box would contain
an open brace ({) and perhaps a handful of selector symbols, such as a

589

Part IV: Additional CSS Tools

FIGURE 40-1

Many text editors, like vim (shown here), offer syntax highlighting, automatic code indentation,
and more.

FIGURE 40-2

A few specialty Web editors, such as Dreamweaver (shown here), offer syntax checking and text
auto-completion.

590

Chapter 40: Testing and Validating CSS

class indicator (.), a child separator (>), or an adjacent sibling separator (+). One keyboard
stroke or mouse click can insert any of the suggested characters; and when a second character
is necessary to complete a pair (as with braces), the second character is inserted as well. Savvy
code editors know CSS properties and can offer to auto-insert them as well, reducing the chance
of typing errors. Figure 40-2 shows a CSS file being edited in Dreamweaver, with Dreamweaver
offering a dialog box of style properties that can be auto-inserted.

Using even the simplest editor with these features enables you to retain better control over your
CSS documents as you edit them, helping to ensure that they begin, and stay, error-free.

A Word About Formatting
As you have probably noticed from examples in this book and other sources, you can format
your CSS definitions in many ways. For example, consider the following definition, which
adheres to CSS standards but is shown formatted three different ways:

h1 { font-size: 16px; margin: 0px; padding: 0px;
color: #0AAE02;}
h1 { font-size: 16px;

margin: 0px;
padding: 0px;
color: #0AAE02;}

h1 {
font-size: 16px;
margin: 0px;
padding: 0px;
color: #0AAE02;

}

Each of the preceding examples is completely valid, although the last example seems to be pre-
ferred by experts such as the W3C. (It’s the format the Jigsaw validation tool uses.)

When creating your styles, it is a good idea to pick a formatting style that you are comfortable
with and use it exclusively. The routine will help you spot common errors, enabling you to write
valid CSS out of the gate.

Validating CSS
Several tools are available for validating your CSS code — both online tools and applications.
One of the best tools available is the W3C tool, code-named Jigsaw, which is available at
http://jigsaw.w3.org/css-validator/ and shown in Figure 40-3.

The tool enables you to provide your CSS via a URL or file upload, or by directly inputting
your code into the tool. You can also tailor the types of warnings you receive, the CSS profile
that should be used to check your code, and the intended medium for your styles (aural, print,
screen, and so on).

One advantage of this tool is that it was developed and is maintained by the W3C, arguably the
absolute authority for CSS.

591

Part IV: Additional CSS Tools

FIGURE 40-3

The W3C Jigsaw tool provides in-depth validation for CSS files

When your code is run through the tool, it will indicate any errors it finds and display the rest
of your code in a particular format, as shown in Figure 40-4.

Firefox Add-ons for CSS Editing
As much as nature abhors a vacuum, Web developers abhor a lack of tools to edit Web code.
To that end, many Firefox add-ons have been developed to aid in the creation and maintenance
of CSS code. Piggybacking on the functionality of the Firefox browser, these tools provide very
capable (and usually free) means of editing CSS.

One such tool is EditCSS, currently in pre-release version 0.3.7 (https://addons.mozilla.
org/en-US/firefox/addon/179). Using a handful of editing features, EditCSS enables you to
edit a currently loaded stylesheet.

Another tool is CSS Validator, currently in its third version (https://addons.mozilla.org/
en-US/firefox/addon/2289). CSS Validator gives developers access to a handful of tools that
can be used to correct validation errors it finds using its validation mode.

592

Chapter 40: Testing and Validating CSS

FIGURE 40-4

The Jigsaw tool both displays errors and formats the rest of your code.

CSS Errors

CSS Warnings

CSS Valid and Tidy Code

Other tools like Firebug, in version 1.4.2 (https://addons.mozilla.org/en-US/firefox/
addon/1843), are geared more toward development than they are validation, but their ability to
edit and manipulate styles provide some valuable insight during development.

Note
More plug-ins for Firefox are being developed every day. You are encouraged to visit the Firefox add-on site
(https://addons.mozilla.org/en-US/firefox/) frequently to browse for additional tools. �

Summary
Although CSS follows a very simple and strict format structure, it is still easy to incorrectly for-
mat a selector or improperly use a value keyword. This chapter presented a few ways you can
double-check the formatting and validity of your CSS code, helping keep such errors to a mini-
mum. The next chapter covers a handful of CSS tips and tricks you can use in your documents.

593

CSS Tips and Tricks

IN THIS CHAPTER
Hanging Indents

Expanding Buttons

Pull Quotes

Tabbed Menus

Rounded Boxes

Flowing Elements

Flowing Text

Throughout this part, I’ve covered CSS from an elementary, technical
standpoint. This chapter provides a handful of practical examples
demonstrating how CSS can be used in unique yet useful ways.

Hanging Indents
The hanging indent, where all but the first line of a paragraph is indented,
is a staple of the publishing world. As documentation on the Web becomes
more reflective of the traditional printed page, the need for publishing con-
ventions continues to grow.

For clarity, the following is an example of a hanging indent:

The Oasis of Tranquility offers a full menu of services
to renew the real you that lies within. Begin
in one of our two relaxation centers, then enjoy
an invigorating body and facial care, deep soothing
massage therapies, and a host of other indulgent
treatments that pamper you on the outside, and
revive you from within. In addition to our many
spa services, take a refreshing dip in the swimming
pool, melt in one of our whirlpool spas, or rejuvenate
in the sauna.

Examining the list of indent, padding, margin, and alignment properties in
CSS might give you quite a few ideas about how to accomplish this format-
ting. There is also the :first-line pseudo-element; despite its sketchy
adoption in user agents, it might be the perfect solution.

However, the solution is quite simple: utilize the text-indent and
margin-left properties, as shown in the following code and Figure 41-1:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

595

Part IV: Additional CSS Tools

<html>
<head>
<title>A Hanging Indent</title>
<style type="text/css">
p.hang { text-indent: -40px;

margin-left: 40px;}
</style>
</head>
<body>
<p class="hang">The Oasis of Tranquility offers a full menu of
services to renew the real you that lies within. Begin in one of
our two relaxation centers, then enjoy an invigorating body and
facial care, deep soothing massage therapies, and a host of
other indulgent treatments that pamper you on the outside, and
revive you from within. In addition to our many spa services,
take a refreshing dip in the swimming pool, melt in one of our
whirlpool spas, or rejuvenate in the sauna.</p>
</body>
</html>

FIGURE 41-1

A hanging indent is relatively easy to achieve.

596

Chapter 41: CSS Tips and Tricks

The trick is to set the paragraph’s text-indent property to the exact negative of the left-
margin property. The text-indent property controls the indentation of the first line of a
block — our paragraph in this example. Setting this property to a negative value results in the
first line escaping the overall margin.

Expanding Buttons
For many years, graphic images have been used as the background for buttons. However, for as
many years these images suffered from a particular flaw: They didn’t grow or shrink with the size
of the text used for the button. An example of this is shown in Figure 41-2, where different-size
captions are placed over the same button.

FIGURE 41-2

Small buttons with large type or large buttons with small type can look unprofessional.

Thankfully, several industrious souls have created methods for creating ‘‘shrink-wrapped’’ but-
tons, whereby the graphic acts like the plastic of the same name and wraps itself around the text
it is given. The key to these buttons is a layered graphic approach, where one part of the but-
ton code contains the left half of the image and another part of the code contains the right. The
result is a type of sliding door — like a set of glass patio doors — that slide together or apart, as
necessary, to span the required gap.

Figure 41-3 shows a visual representation of how this concept works.

The key is that the right side of the button slides on top of the left, and the left side stops where
the right side is placed. This keeps the extra length of the left side of the button from jutting out
when the whole comes together.

Another image technique that has become popular for buttons is to place several images together
in one background image and use the background-position property to slide the required

597

Part IV: Additional CSS Tools

image into place when it is needed. For example, it is a popular practice to place the inactive
and active button graphics together in one image. The combined image is then placed as the but-
ton background such that only the inactive image is visible. When the button is activated, CSS
rules cause the background graphic to shift and display the active image. Figure 41-4 illustrates
this concept.

FIGURE 41-3

One approach to dynamically sized buttons is the ‘‘sliding door’’ approach–using two pieces of
the button that can slide together or apart as necessary.

Left image

The Slide
Right image

FIGURE 41-4

A popular technique to produce dynamic buttons is to place all the button graphics on a larger
graphic and to use CSS positioning to expose the necessary graphic, as demonstrated in the
figure below.

Inactive image

Active image

Combined image

The background is placed normally. Only
the inactive image can be seen because it
flows outside of the viewport.

On a desired action, another set of CSS
rules shifts the background up, exposing
the active image while hiding the inactive one.

The following code illustrates the entire process by creating a handful of buttons, as shown in
Figure 41-5. Note that the button graphics are displayed under the buttons to better illustrate
how they look.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

598

Chapter 41: CSS Tips and Tricks

<html>
<head>
<title>Shrinkwrapped Buttons</title>
<style type="text/css">
a.button {

background: transparent url(’images/button_a.jpg’)
no-repeat scroll top right;

color: black;
display: block;
float: left;
font: 12px arial, sans-serif;
height: 25x;
margin-right: 6px;
padding-right: 28px; /* padding for the right image, */
text-decoration: none; /* should match the image width */

}
a.button span {

background: transparent url(’images/button_span.jpg’) no-repeat;
display: block;
line-height: 14px;
padding: 5px 0 5px 20px;

}
a.button:active {

background-position: bottom right;
color: #aaaaaa;
outline: none; /* hide outline displayed by some user agents */

}
a.button:active span {

padding: 6px 0 4px 20px; /* move text a bit for effect */
background-position: bottom left;

}
</style>
</head>
<body>
<div>

Home

Products and Services

Contact Us
</div>
<hr style="clear: both;">
<table border="0" cellpadding="10px">
<tr>
<td>button_span.jpg</td>
<td>
</td>

</tr>
<tr>
<td>button_a.jpg</td>

599

Part IV: Additional CSS Tools

<td></td>
</tr>
</table>
</body>
</html>

FIGURE 41-5

The finished buttons with two visual states and shrink-wrap capability

In this particular case, the :active link pseudo-class is used to trigger the button transforma-
tion. Unfortunately, this state is sticky in Internet Explorer, requiring the bit of JavaScript with
each link to instantly set it back to inactive when clicked.

Pull Quotes
Although more prevalent in magazine publishing, pull quotes are another publishing convention
that is now popular on the Web. Pull quotes are generally an edited excerpt of an article placed
in larger type and outside the article’s text. They are meant to draw attention to the article by
offering little tidbits of content.

Although you are likely familiar with pull quotes, an example of a pull quote might resemble the
following:

‘‘ . . . his car and jacket were at the scene . . . ’’

600

Chapter 41: CSS Tips and Tricks

Implementing a pull quote is simple: Place the appropriate text in a div element, make the
text a bit larger than normal, and float the div to a margin. For example, consider the following
code, whose results are shown in Figure 41-6:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

<html>
<head>
<title>Pull Quotes</title>

<style type="text/css">
.pullquote {

width: 150px;
font-size:125%;
line-height:140%;
margin:10px;
padding:10px;
border: 1pt dotted black;
float:right;

}
</style>

<body>
<div id="intro"><div><h2>Introducing the Oasis</h2>
<p>The Oasis of Tranquility is a premier spa with an environment de-

signed to embrace you in an air of calming relaxation. When you walk
through our doors the outside world will slip away, as you allow our
dedicated team of professionals to pamper you in an experience
focused on personalized care. We offer a variety of salon and spa
services, which can be chosen a la carte for an individual service or
to create your own personalized package of services. Come to the
Oasis of Tranquility and let us cater to all your beauty and relaxa-
tion needs.</p></div></div>
<div class="pullquote"><p>...indulgent treatments that pamper you on

the outside, and revive you from within...</p></div>
<div id="spa"><h2>Spa Services</h2>
<p>The Oasis of Tranquility offers a full menu of services to renew

the real you that lies within. Begin in one of our two relaxation
centers, then enjoy an invigorating body and facial care, deep sooth-
ing massage therapies, and a host of other indulgent treatments that
pamper you on the outside, and revive you from within. In addition to
our many spa services, take a refreshing dip in the swimming pool,
melt in one of our whirlpool spas, or rejuvenate in the sauna.</p>
</div>
<div id="salon"><h2>Salon Services</h2>
<p>Focusing on our clients’ individual needs, we offer services by

talented stylists, and chemical treatments delivering the most stun-
ning hues, all in a relaxing spa environment. Focusing on our guests’
needs begins with an open dialogue between you and your stylist. This
communication allows our hair salon guests to get to know their styl-
ist, while educating the guest on how we will achieve and maintain
that specific look they desire. Photographs and descriptions of the
looks you desire are welcome. Our salon artists have the knowledge,

601

Part IV: Additional CSS Tools

training, experience, and creativity to make any vision reality. The
same level of personalized care is given by our nail and skincare
technicians, in order to ensure the most relaxing and effective
treatments for each individual.</p></div>
<div id="gift"><h2>Give the Gift of Tranquility</h2>
<p>All services at the Oasis of Tranquility can be experienced indi-

vidually, or selected a la carte to create your own personalized day
of pampering. Gift certificates are excellent for surprising your
loved ones with an hour or a day of pampering and rejuvenation.</p>
</div>
<div id="summary"><h2>In Summary...</h2>
<p>So when you are looking for an experience that will relax, reju-

venate, and free you from the weight and stress of everyday life and
leave you looking and feeling like the person you really are, come to
the Oasis of Tranquility.</p></div>
</body>
</html>

FIGURE 41-6

The pull quote block can be as simple or as ornate as you wish.

Of course, you can use additional CSS rules to style the pull quote block to your
liking — inserting backgrounds, images, creative font effects, and so on.

602

Chapter 41: CSS Tips and Tricks

Tabbed Menus
One trend in menu design is to create menus in tabular form — that is, menu items that look
like the tabs at the top of paper files. This method of creating menus is popular for a couple of
reasons:

� The structure more closely resembles the menus found in most computer applications.

� The structure is created from components that don’t lose their visual meaning if the ornate
styling is not present.

The importance of the first reason should be apparent — after years of cramming Web naviga-
tion into every nook and cranny on the page, we can start to emulate the rest of the computer
world by putting distinct blocks across the top of a page.

The second reason makes more sense when you consider what most tabular menus are con-
structed of: unnumbered list elements. Because menus (and submenus) are just lists at heart,
using list elements in their construction makes a lot of sense; and, of course, if a list is broken
down into its base components due to the absence of fancy styles, it retains its meaning and
hierarchy.

Of course, a list is meant to be vertical in orientation, so how do you get it to display horizon-
tally? Using the display property and setting it to inline effectively takes a block element and
makes it an inline one.

Figure 41-7 shows an example of a simple menu created from list elements.

The code that generates this menu is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

<html>
<head>
<title>Tabbed Menus</title>
<style type="text/css">
li.menu {

display: inline;}
li.menu a {

background-image: url(’images/tab.gif’);
width: 138px;
text-align: center;
border-bottom: 1pt black solid;
float: left;}

li.menu a:hover {
background-image: url(’images/tabhover.gif’);
font-weight: bold;}

li.menu a.active {
border-bottom: none;}

</style>
</head>

603

Part IV: Additional CSS Tools

<body>
<p>

<li class="menu">One
<li class="menu">Two
<li class="menu">Three
<li class="menu">Four

</p>
</body>
</html>

FIGURE 41-7

List elements make excellent tabbed menus. Tab Three is active (note the line under the tab isn’t
visible) and tab One has changed color due to the mouse hovering over it.

While the CSS is a bit complex, the HTML itself is very simple. The list elements handle the
layout and some of the formatting, while their embedded anchors handle the actual navigation.
A breakdown and explanation of the styles follow:

� All the li elements used in the menu have a class of menu to match the selectors that
enable them.

� The first style simply sets each li element to be displayed inline so they display
horizontally.

604

Chapter 41: CSS Tips and Tricks

� The next style, selecting the anchor element under each list element, does most of the
heavy lifting:
� It sets a background image to that of a tab.

� It sets the element’s width to match the width of the background image.
� It aligns the text to the center of the element.

� It applies a border to the bottom of the element to give it the appearance of being
behind the other elements.

� Perhaps most important, it floats the element to the left to cause all the list elements to
stack up against the element, or margin, to its left.

� The hover style changes the tab’s appearance when the mouse hovers over it. This is
accomplished by making the font bold and changing the background image so the tab
visually changes.

� The last style is applied only to a tab that has a class of active. This style removes the
bottom border, making the tab appear as if it were on the top of the stack (hence, active).

Rounded Boxes
If there was ever a ‘‘brass ring’’ of CSS, it was elements with rounded corners. Text treatments of
this type are fairly routine in the print world, but not in the boxy world of HTML.

Note
Several different techniques to achieve this result have been created over the years. The following code
shows only one of the methods you can use. �

To accomplish this effect, you create the four corners as images, placed using div elements, and
fill the space in between with a matching background color. For example, consider the following
code, and the annotated results shown in Figure 41-8:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Rounded Corner Content</title>
<style type="text/css">
/* Main content div */
.rounddiv {

width: 250px;
background-color: #E22000;
color: #FFFFFF;

}
/* Paragraphs in rounded div get

a default margin */
.rounddiv p {

margin: 0 10px;
}
/* Div for top corners */
.roundtop {

background: url(’images/tr.jpg’) no-repeat top right;
}
/* Div for bottom corners */

605

Part IV: Additional CSS Tools

.roundbottom {
background: url(’images/br.jpg’) no-repeat top right;

}
/* Default settings for rounded corner images */
img.corner {

width: 17px;
height: 17px;
border: none;
display: block !important;

}
</style>
</head>
<body>
<div class="rounddiv">

<div class="roundtop">
<img src="images/tl.jpg" alt=""
width="17" height="17" class="corner"
style="display: none" />
</div>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.</p>
<div class="roundbottom">
<img src="images/bl.jpg" alt=""
width="17" height="17" class="corner"
style="display: none" />
</div>

</div>
</body>
</html>

Note
Although div elements provide the most flexible and intuitive element to achieve rounded corners, it is
possible to construct alternatives using other XHTML elements. �

Note that the preceding code renders only the completed rounded-corner box shown on the left
in Figure 41-8, not the exploded, annotated version on the right.

There are several caveats to this approach:

� The rounded image and the background of the div elements must match. You cannot use
the same corner images with different color div elements.

� The rounded corners use a white background. While this is appropriate for documents
that have a white background, it doesn’t work well with documents that use a different
color for their background, as shown in Figure 41-9.

606

Chapter 41: CSS Tips and Tricks

FIGURE 41-8

The rounded-corner text box was once the brass ring of HTML formatting.

� The rounded corner element does not scale well — it is set for a fixed width of 20em,
which is capable of handling most textual elements, but larger elements (such as tables)
might cause issues within the confines of the rounded corner element.

� Most of these caveats have been overcome by other methods to achieve rounded corners.
Of course, each method has its own set of caveats — the trick is to pick a method appro-
priate for your document.

� Currently, there are more methods to achieve rounded corners than can be reasonably
counted. The following two sites provide many rounded corner methods:

� Smileycat Web Design Blog — ‘‘CSS Rounded Corners ‘Roundup’’’ at www.smileycat
.com/miaow/archives/000044.php

� CSS Juice — ‘‘25 Rounded Corners Techniques with CSS’’ at www.cssjuice.com/25-
rounded-corners-techniques-with-css/

Tip
In the event that none of the techniques listed on these sites meet your requirements, use your favorite
search engine to find more ‘‘CSS rounded corner’’ solutions. �

607

Part IV: Additional CSS Tools

FIGURE 41-9

Different background colors give the rounded corner trick away.

Flowing Elements
Some document designs can benefit from allowing certain elements on the page to ‘‘float.’’ For
example, compare Figure 41-10 and Figure 41-11. They show the same document in the same
user agent, but the user agent’s window has been narrowed in Figure 41-11.

Notice how the small boxes flow into rows that fit the document’s width. As the document nar-
rows, fewer elements can fit on each line. The last element(s) on the line are forced to the next
line, accordingly. If the document widens, allowing more elements to fit on each line, element(s)
from the next line move up a line to fill the gap. These types of document designs are used pri-
marily in catalog or item lookup directories where the floating div size should remain constant
but flow according to the document’s width.

The design is remarkably easy to achieve. The general steps are listed here, followed by
example code:

1. Create a container div element that is roughly the width of the user agent screen
(width: 95%).

2. Set the top and right padding of the container to a suitable value — one that will pro-
vide the appropriate amount of space between the top and right edges of the container

608

Chapter 41: CSS Tips and Tricks

and the interior div elements. For the best results, set both padding values to the same
amount.

FIGURE 41-10

A directory or catalog of items can be represented by individual cells (div elements).

3. Place the required number of div elements (floaters) inside the container element.

4. Style the floating div elements any way you like (e.g., the drop shadow effect in
Figure 41-11).

5. Set an explicit width and height for each floating element.

6. Set the right and bottom margins of the floating elements to the same value you used for
the container’s padding (step 2). The container’s padding provides the space between the
top row and rightmost column of floating elements. The floating element margins provide
the space between floating element columns and rows.

7. Set all elements (container and float) to float to the left.

Note
All of the preceding formatting should be accomplished only via appropriate CSS styles. �

609

Part IV: Additional CSS Tools

FIGURE 41-11

If the container and elements are styled correctly, the elements will flow within the container and
change their flow if the container changes shape.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<style type="text/css">
div.container {

width: 90%;
padding: 50px;
float: left;
border: 2px solid black;
}

div.floating {
background-image: url("images/thumbback.jpg");
background-position: center;
background-repeat: no-repeat;
width: 165px;
height: 165px;

610

Chapter 41: CSS Tips and Tricks

margin-right: 50px;
margin-bottom: 50px;
float: left;
}

</style>

<body>

<div class="container">

<div class="floating"> </div>
<div class="floating"> </div>
<div class="floating"> </div>
<div class="floating"> </div>
<div class="floating"> </div>
<div class="floating"> </div>
<div class="floating"> </div>
<div class="floating"> </div>

</div>

</body>
</html>

Flowing Text
Another often sought after CSS formatting effect is the ability to flow text seamlessly around
other elements. For example, Figure 41-12 shows text that flows around the curved image in
the document.

This effect is achieved by placing several spacing span elements along the curve, forcing the
text to flow accordingly. This is best illustrated by turning on the borders of the spacing span
elements, as shown in Figure 41-13.

The following code can be used to accomplish the formatting shown in Figure 41-13:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<style type="text/css">

#wrapper {
text-align: left;
width: 600px;
margin: 30px auto;
border: 1px solid blue;
padding: 15px 0px 5px 15px;
background: url(’images/circleRight.gif’) no-repeat;
background-position: right top;
}

611

Part IV: Additional CSS Tools

.spacer {
float: right;
display: block;
height: 15px;
clear: right;
margin-left: 10px;
}

#vspacer {
width: 1px;
height: 15px
}

#spacer01 { width: 70px; }
#spacer02 { width: 85px; }
#spacer03 { width: 100px; }
#spacer04 { width: 115px; }
#spacer05 { width: 130px; }
#spacer06 { width: 140px; }
#spacer07 { width: 140px; }
#spacer08 { width: 130px; }
#spacer09 { width: 115px; }
#spacer10 { width: 100px; }
#spacer11 { width: 85px; }
#spacer12 { width: 70px; }
#spacer13 { width: 60px; }
#spacer14 { width: 60px; }

</style>

<body>

<div id="wrapper">

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Nam venenatis facilisis risus. Vestibulum lacus neque, scelerisque
ut, gravida sit amet, laoreet sed, sapien. Nunc tincidunt convallis
mauris. Proin aliquam tristique ipsum. Pellentesque libero orci,

612

Chapter 41: CSS Tips and Tricks

pharetra vel, fringilla eu, pretium eget, enim. Quisque facilisis
tincidunt risus. Mauris et elit. In hac habitasse platea dictumst.
Phasellus a dolor non ligula laoreet aliquet. Vestibulum dolor.
Aliquam in sapien. Curabitur pretium. Morbi vitae risus ut lectus
venenatis sagittis. Aliquam ut sem. In a purus vel libero porttitor
suscipit. Duis odio leo, pellentesque vitae, euismod ut, blandit sit
amet, urna. Nam suscipit leo elementum elit. Donec dui. Etiam quam.
Morbi sodales, leo et semper egestas, massa elit fermentum pede, non
scelerisque massa justo non ante. Sed suscipit consequat tortor.
Duis at risus sit amet elit faucibus facilisis. Vestibulum
lacinia. Vivamus rutrum interdum sem. Maecenas nisl risus, porta ac,
faucibus ac, euismod at, sem. Nulla tincidunt orci laoreet pede.
Morbi scelerisque erat vel nunc. Etiam a lectus vel diam congue
congue. Proin nec nibh. Nulla volutpat semper nisl.
</p>

</div>

</body>
</html>

FIGURE 41-12

Flowing text around objects and graphics is easy with CSS

613

Part IV: Additional CSS Tools

FIGURE 41-13

The invisible elements keep the text away from the edges of the graphic and simulate flowing text.

The CSS vspacer id definition (defined but not used in this example) can be used to start the
spacing span elements lower on the page. For example, if the circle started 50 or so pixels lower
in the document, the following CSS and XHMTL code would be used, with the vspacer placed
before the other spacer span elements:

#vspacer {
width: 1px;
height: 15px
}

. . .

This would result in the horizontal spacers being pushed down in the document to better align
with the circle.

614

Chapter 41: CSS Tips and Tricks

Tip
This trick can be used to flow text around just about anything, even several images (or elements) in a docu-
ment. The only limitation is where you can place the spacer elements to direct the text. �

Summary
This chapter presented a handful of tips and tricks you can accomplish in your documents with
the aid of CSS. You learned how to create hanging indents in your text, expandable buttons that
can be used with almost any size of text, pull quotes, and tabular-style menus. You can create
many more unique uses for CSS using these ideas as the basis.

615

XHTML Element
Quick Reference

IN THIS APPENDIX
Element Listings

Event Attributes

Other Common Attributes

This appendix provides a reference to XHTML 1.1 markup conven-
tions and standards. As a result of its XML heritage, XHTML is much
less forgiving than HTML has historically been (or, perhaps more

accurately, than HTML browsers have been). You cannot omit closing tags
or place an italic (i) element inside an anchor (a) element. Attribute val-
ues must be quoted, and minimized attributes are disallowed, which leads
to odd constructs such as <select multiple="multiple">. The more
strict conventions help ensure that your code is more standards-compliant
and forward-looking.

Here are some tips to keep in mind when working with XHTML:

� XHTML documents must be well-formed (closing tags required, no
overlapping tags allowed).

� Empty elements can be both opened and closed with one tag:
.

� All elements and tags must be in lowercase.

� Attribute values must be quoted (with either single or double quotes).

� Attributes cannot be minimized — that is, all attributes must have
values. For example, the textarea element supports a readonly
attribute. In HTML, the attribute had to be present only in the
element, such as <textarea readonly>. In XHTML, however,
the readonly attribute must have a value. When a value is not
applicable, the name of the attribute is generally used, such as
<textarea readonly="readonly">.

In the element listings that follow, the location within a document in which
each element may reside is indicated through one of two mechanisms. If the
element has a very limited number of valid parent elements, then those are
listed. Otherwise, the placement is described as either ‘‘inline’’ or ‘‘block.’’

617

Appendix A: XHTML Element Quick Reference

In turn, unless there are a limited number of valid children for a non-empty element, the content
is documented as some combination of block, inline, or text.

If an element is listed as having a block placement, it may reside directly within any other ele-
ment that is listed as having block contents (and nowhere else). Most block elements will render
as such, and most inline elements will render inline, but that is not always true.

Note
For a list of the core, internationalization, and standard event attributes, see the end of this appendix. �

Element Listings
The following section provides a list of all HTML elements.

<a>
Specify either the inclusion or terminating point of a hyperlink.

Context

Placement Inline

Content Inline and text

Attributes

Optional

accesskey="<character>"

charset="<character encoding>"

coords="<length, . . . >"

href="<URL>"

hreflang="<language code>"

name="<anchor>"

onblur="<script>"

onfocus="<script>"

Rel="<linktype . . . >"

Rev="<linktype . . . >"

618

Appendix A: XHTML Element Quick Reference

shape="rect|circle|poly|default"

tabindex="<number>"

type="<MIME type>"

Core, Internationalization, Standard events

Usage example

<p>Lincoln’s
Gettysburg
Address has both been widely noted and long remembered.</p>

Using <a> as an anchor point with the name attribute is frequently seen with machine-generated
HTML that includes a table of contents and/or an index.

<abbr>
Demarcate the enclosed text as an abbreviation.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>If you’re old enough to remember using <abbr>Fla</abbr> to send
mail to Florida, you’re getting up there. Of course, if you’re old
enough to remember sending letters at all…</p>

The W3C refers to acronyms such as HTTP as abbreviations, so the distinction between abbr
and acronym elements seems to be pretty fuzzy.

619

Appendix A: XHTML Element Quick Reference

<acronym>
Demarcate the enclosed text as an acronym.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>The <acronym title="World Wide Web Consortium">W3C</acronym> is
the organization responsible for guiding <acronym title="HyperText
Markup Language">HTML</acronym> and many related standards.</p>

When combined with the title attribute and CSS, this tag can be used to edify the reader. For
example, if the preceding paragraph is combined with a stylesheet that indicates the browser
should render acronyms as underlined or boxed, the browser will render the acronyms in a way
that indicates the user can interact with them, and placing the mouse over one of them will dis-
play a tooltip (assuming a graphical Web browser).

<address>
Demarcate the enclosed content as the address of an individual or organization.

Context

Placement Block

Content Inline and text

620

Appendix A: XHTML Element Quick Reference

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>Sincerely, John Doe.</p>
<address>
1234 Main St.

Springfield, U.S. 101010

</address>

<area>
Describe the physical layout of an image map.

Context

Parent map

Attributes

Required Optional

alt="<text>" accesskey="<character>"
coords="<length, . . . >"
href="<URL>"
nohref="nohref"
onblur="<script>"
onfocus="<script>"
shape="rect|circle|poly|default"
tabindex="<number>"
Core, Internationalization, Standard events

Usage example
See <map>.

Indicate that the enclosed text should be rendered in a bold typeface.

621

Appendix A: XHTML Element Quick Reference

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>Do not press the red button!</p>

Whenever feasible, try describing the semantic meaning of the text instead of the rendering prop-
erties; for example, use instead of . CSS is the most flexible mechanism for speci-
fying the appropriate rendering for semantic content.

See also and .

<base>
Define the original/desired location for the document.

Context

Parent head

Attributes

Required

href="<URL>"

Usage example

<head>
<base href="http://www.w3.org/TR/html401/index/elements.html"/>
<title>Index of the HTML 4 Elements</title>

</head>

622

Appendix A: XHTML Element Quick Reference

Used so that relative links within the document are evaluated with respect to the base location,
rather than wherever they may currently reside.

<bdo>
Indicate that the enclosed text should be rendered in a specific direction (left to right or right to
left) that may be different from its environment.

Context

Placement Inline

Content Inline and text

Attributes

Required Optional

dir="ltr|rtl" lang="<language code>"
xml:lang="<language code>"
Core, Standard events

Usage example

<p><bdo dir="rtl">Quite a dramatic cultural difference to read
text right to left.</bdo></p>

Internationalization is a complex issue; the directionality in which a language is rendered is just
one of many issues to consider. Most Web content ignores the issue, assuming that most readers
understand English, but it is unclear how long that assumption will hold true.

<big>
Indicate that the enclosed text should be rendered in a larger font.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

623

Appendix A: XHTML Element Quick Reference

Usage example

<p>Last week I nearly caught a <big>really big</big> fish, but it
got away.</p>

CSS provides more flexible font resizing.

See also <small>.

<blockquote>
Enclose a long quotation.

Context

Placement Block

Content Block, inline, and text

Attributes

Optional

cite=‘‘<URL>’’

Core, Internationalization, Standard events

Usage example

<blockquote cite="http://wikisource.org/wiki/Gettysburg_Address">
Four score and seven years ago our fathers brought forth on this
continent, a new nation, conceived in Liberty, and dedicated to the
proposition that all men are created equal.</blockquote>

This should not be used as a mechanism for indenting arbitrary text. Instead, use a p or div
element with CSS.

See <q> for the inline equivalent to this tag.

<body>
All content visible on a Web page is contained within this tag.

624

Appendix A: XHTML Element Quick Reference

Context

Parent html

Content Block, inline, and text

Attributes

Optional

onload="<script>"

onunload="<script>"

Core, Internationalization, Standard events

Usage example

<html>
<head><title>Just another web page</title></head>
<body><h1>Just another web page</h1>

...
</body>

</html>

Once upon a time, the body tag was optional. This is no longer true.

Force a newline between text and/or inline elements.

Context

Placement Inline

Attributes

Optional

Core

625

Appendix A: XHTML Element Quick Reference

Usage example

<p>Down by the salley gardens my love and I did meet;

She passed the salley gardens with little snow-white feet.

She bid me take love easy, as the leaves grow on the tree;

But I, being young and foolish, with her would not agree.</p>

Use this tag sparingly. It should not be used as a substitute for paragraph tags.

See also <pre>.

<button>
Define a button in a form. Any content will be superimposed on the button.

Context

Placement Inline

Content Block, inline, and text

Attributes

Optional

accesskey="<character>"

disabled="disabled"

name="<button name>"

onblur="<script>"

onfocus="<script>"

tabindex="<number>"

type="button|submit|reset"

value="<application value>"

Core, Internationalization, Standard events

Usage example

<form action="/cgi-bin/post" method="post">
<p>...
<button value="submit"></button>
</p></form>

626

Appendix A: XHTML Element Quick Reference

This is similar to the <input type=’button’> element but allows content.

<caption>
Define a caption for a table.

Context

Parent table

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example
See <table>.

Contrary to what one might expect, captions are not rendered in an emphasized typeface. Use
CSS to place appropriate emphasis on the caption, such as a larger font or a bold typeface.

<cite>
Demarcate a source citation.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage Example

<p>The population of Freedonia in 1803 was larger than that of
Malta. (<cite>Williams 1953, p. 42</cite>)</p>

627

Appendix A: XHTML Element Quick Reference

<code>
Demarcate inline code snippets.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage Example

<p>In Perl, iterating over a list can easily be achieved with
<code>foreach</code>: <code>foreach my $value (sort @keys) { ... }
</code>.</p>

For longer blocks of code, use the pre element.

<col>
Specify attributes for a full column in a table.

Context

Parents Colgroup
table

Attributes

Optional

span="<number>"

width="<length (pixels, percentage, relative)>"

Core, Internationalization, Standard events

628

Appendix A: XHTML Element Quick Reference

Usage example
See <table>.

Support for this element is limited in some browsers.

<colgroup>
Group columns in a table for assigning attributes.

Context

Parent table

Content col

Attributes

Optional

span="<number>"

width="<length (pixels, percentage, relative)>"

Core, Internationalization, Standard events

Usage example
See <table>.

As with col, full support for this element is not widespread.

<dd>
Wrap the definition of a term in a definition list.

Context

Parent dl

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

629

Appendix A: XHTML Element Quick Reference

Usage example
See <dl>.

Demarcate content that has been deleted from a document.

Context

Placement Anywhere inside body or its children

Content Inline and text. Block permissible when not functioning as an inline.

Attributes

Optional

cite="<URL>"

datetime="<ISO Date/Time>"

Core, Internationalization, Standard events

Usage example

<p>Four score and seven years ago when the British held sway
over these lands our fathers brought forth, on this continent...

The inverse of this element is the ins element.

<dfn>
Indicate that a term is defined in this location.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

630

Appendix A: XHTML Element Quick Reference

Usage example

<p><dfn>UNIX</dfn> is a widespread operating system that
originated at Bell Labs.</p>

This element is useful for machine-generated indices.

<div>
Enclose a block of content for structural or style purposes.

Context

Placement Block

Content Block, inline, and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<div class="blockquote">With CSS, this block of text can be
rendered like a <blockquote>.</div>

The inline equivalent element is span.

<dl>
Enclose a list of terms and definitions.

Context

Placement Block

Content dt
dd

Attributes

Optional

Core, Internationalization, Standard events

631

Appendix A: XHTML Element Quick Reference

Usage example

<dl><dt>molecule</dt>
<dd><cite>Webster’s Revised Unabridged Dictionary (1913)</cite>:
One of the very small invisible particles of which all matter is
supposed to consist.</dd>
</dl>

The compact attribute is not permitted in the Strict DTD. Use CSS instead.

<dt>
Wrap a term defined in a definition list.

Context

Parent dl

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example
See <dl>.

Demarcate text that should be emphasized.

Context

Placement Inline

Content Inline and text

632

Appendix A: XHTML Element Quick Reference

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>There is no substitute for catsup.</p>

See also , <i>, and .

<fieldset>
Wrap a group of related labels and controls in a form.

Context

Placement Block

Content First child: legend. Remainder: Block, inline, and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example
See <form>.

This element is useful for accessibility purposes. See <label> for another form element that
would enable you to provide better accessibility for those who are using a nonvisual mechanism
to ‘‘view’’ a form.

<form>
Define a collection of controls used to gather and submit information to a Web application.

633

Appendix A: XHTML Element Quick Reference

Context

Placement Block

Content Block (except nested form elements). Can also contain script.

Attributes

Required Optional

action="<URL>" accept-charset="<character encoding . . . >"
accept="<MIME type, . . . >"
enctype="<MIME type>"
method="get|post"
onreset="<script>"
onsubmit="<script>"
Core, Internationalization, Standard events

Usage example

<form action="https://www.example.com/cgi-bin/do-something.cgi"
onsubmit="validate()">
<fieldset><legend>Shipping address</legend>
<label>Name: <input type="text" name="name"/></label>
<label>Street address: <input type="text" name="street"/>
</label>

</fieldset>
<p>
<input type="submit" value="Ship it!"/>
<input type="reset" value="Oops, start over"/>

</p>
</form>

Many HTML documents use inline elements such as <input> directly under a <form> tag, so
the failure to use only block elements (not counting script) inside <form> is a common vali-
dation error when writing XHTML Strict DTD documents.

See also <input>, <button>, <textarea>, <select>, <label>, and <fieldset>.

<h1>, <h2>, <h3>, <h4>, <h5>, <h6>
Header tags provide some structure to a document.

Context

Placement Block

Content Inline and text

634

Appendix A: XHTML Element Quick Reference

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<body>
<h1>Analysis of the price of wheat in 17th century Freedonia</h1>
...
<h2>Inflation between 1620 and 1640</h2>

...
<h3>The great price spike of 1623</h3>

...
<h4>Maltese shipping embargo: fact or political fiction?</h4>

...
<h2>Price controls in the latter half of the century</h2>

If you are unhappy with the way different header tags are rendered, you can use CSS to correct
the problem without changing the tags.

<head>
Wrap the important metadata for a document.

Context

Parent html

Content base, link, meta, object, script, style, title

Attributes

Optional

profile="<URL>" Internationalization

Usage example

<html>
<head>

<title>Freedonia through the ages</title>
<meta name="author" content="John Q. Publique"/>
<meta name="keywords" content="freedonia history europe"/>
<style type="text/css"> ... </style>

</head>

635

Appendix A: XHTML Element Quick Reference

<hr>
Define the location for a horizontal rule in the document.

Context

Placement Block

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>...</p>
<hr/>
<h3>Constitutional crisis of 1901: Freedonia’s last stand</h3>

Styling horizontal rules with CSS is challenging because of inconsistencies between browsers.

<html>
This is the master element for most XHTML documents.

Context

Content head, body

Attributes

Optional

xmlns="<URI>" Internationalization

Usage example

<html>
<head>
<!-- Meta-data here -->

</head>
<body>

636

Appendix A: XHTML Element Quick Reference

<!-- Content here -->
</body>

</html>

<i>
Indicate that the contained text should be rendered with italics.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p><i>I thought they were finished,</i> she thought to herself.</p>

In many instances, the semantics behind the italics can be conveyed through elements such as
cite or em, rather than using i.

Denote the location of an image to incorporate into the document.

Context

Placement Inline

Attributes

Required Optional

alt="<text>" src="<URL>" height="<length (pixels or percentage)>"
ismap="ismap"
longdesc="<URL>"
name="<text>"
usemap="<URL>"
width="<length (pixels or percentage)>"
Core, Internationalization, Standard events

637

Appendix A: XHTML Element Quick Reference

Usage example

<img alt="Sleeping polar bear"
src="http://www.example.com/images/polarbear.jpg"/>

See also <object>.

<input>
Define a mechanism for form input.

Context

Placement Inline

Attributes

Optional

accept="<MIME type, . . . >"

accesskey="<character>"

alt="<short description>"

checked="checked"

disabled="disabled"

maxlength="<number>"

name="<input name>"

onblur="<script>"

onchange="<script>"

onfocus="<script>"

onselect="<script>"

readonly="readonly"

size="<length>"

src="<URL>"

tabindex="<number>"

638

Appendix A: XHTML Element Quick Reference

type="<input type>"

usemap="<URL>"

value="<application value>"

Core, Internationalization, Standard events

Usage example
See <form>.

The valid type attributes: text, password, checkbox, radio, submit, reset, file, hidden,
image, button.

See also <button>, <textarea>, <select>, <label>, and <fieldset>.

<ins>
Demarcate text and/or content that has been inserted into a document.

Context

Placement Anywhere inside body

Content Inline and text. Block permissible when not functioning as an inline
character.

Attributes

Optional

cite="<URL>"

datetime="<ISO Date/Time>"

Core, Internationalization, Standard events

Usage example

<h2>Freedonia’s Volcanoes</h2>
<ins><p>A new volcano erupted in 2003 along the northern coast..</p>
</ins>

See also .

639

Appendix A: XHTML Element Quick Reference

<kbd>
Indicate keyboard input.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

At the username prompt, type <kbd>einstein</kbd>.

<label>
Associate explanatory text with a form input control.

Context

Placement Inline

Content Inline and text

Attributes

Optional

accesskey="<character>" for="<IDREF>"

onblur="<script>"

onfocus="<script>"

Core, Internationalization, Standard events

Usage example
See <form>.

640

Appendix A: XHTML Element Quick Reference

This element can significantly add to the user-friendliness of a form, especially for accessibility
purposes.

<legend>
Provide a caption for a set of form input controls.

Context

Parent fieldset

Content Inline and text

Attributes

Optional

accesskey="<character>"

Core, Internationalization, Standard events

Usage example
See <form>.

If used, this must be the first child of a fieldset element, with nothing but whitespace preced-
ing it.

Wrap a list item for an ordered or unordered list.

Context

Parent ol ul

Content Block, inline, and text

Attributes

Optional

Core, Internationalization, Standard events

641

Appendix A: XHTML Element Quick Reference

Usage example
See .

Vertical whitespace between list items will expand when including nested p elements. If p ele-
ments are necessary to separate paragraphs within a single list item, CSS can be used to shrink
the vertical whitespace if desired.

<link>
Semantically associate related documents.

Context

Parent head

Attributes

Optional

charset="<character encoding>"

href="<URL>"

hreflang="<language code>"

media="<media descriptor, . . . >"

rel="<linktype . . . >"

rev="<linktype . . . >"

type="<MIME type>"

Core, Internationalization, Standard events

Usage example

<head>
<link rel="start" href="introduction.html"/>
<link rel="prev" href="chapter-21.html"/>
<link rel="next" href="chapter-23.html"/>
<title>Freedonia History: Chapter 22</title>

</head>

See www.w3.org/TR/html401/struct/links.html for a good overview of this element’s
usage. The DTD does not constrain the link types that can be used.

642

Appendix A: XHTML Element Quick Reference

<map>
Define an image map for navigation.

Context

Placement Block

Content area, script, noscript, Block

Attributes

Required Optional

id="<ID>" class="<text>"
name="<map name>"
style="<CSS>"
title="<text>"
Internationalization Standard events

Usage example

<h3>Freedonia Regions</h3>
<div>

<map id="map-links" name="map-links">

<area alt="Northern provinces" shape="rectangle"
coords="0,0,100,50"

href="/regions/north.html"/>
<area alt="Eastern provinces" shape="rectangle"
coords="50,50,100,100"

href="/regions/east.html"/>
</map>

</div>

To maximize compatibility across browsers, specify both the id and name attributes.

<meta>
Describe metadata for the document.

Context

Parent head

643

Appendix A: XHTML Element Quick Reference

Attributes

Required Optional

content="<TEXT>" http-equiv="<HTTP header>"
id="<ID>"
name="<metadata key>"
scheme="<metadata scheme identifier>"
Internationalization

Usage example
See <head>.

The XHTML DTD does not constrain the values for the name attribute and there are many pos-
sible uses, including supplementary HTTP information and search engine hints regarding the
document’s content.

<noscript>
Offer alternative content for browsers that do not understand (or do not have enabled) the script-
ing language in use for the document.

Context

Placement Block

Content Block, inline, and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example
See <script>.

Contrary to the example provided in the <script> section, <noscript> elements should not
be used to nag the user about script support. They should be used only to convey information
when the missing functionality is important.

644

Appendix A: XHTML Element Quick Reference

<object>
Embed external content into the document.

Context

Placement Inline

Content First children (if used): param. Block, inline, and text

Attributes

Optional

archive="<URL, . . . >"

classid="<URL>"

codebase="<URL>"

codetype="<MIME type>"

data="<URL>"

declare="declare"

height="<length (pixels or percentage)>"

name="<object name>"

standby="<text>"

tabindex="<number>"

type="<MIME type>"

usemap="<URL>"

width="<length (pixels or percentage)>"

Core, Internationalization, Standard events

Usage example

<object classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
height="400" width="600">

<param name="code" value="Lifter"/>
<param name="archive" value="Lifter.jar"/>

</object>

645

Appendix A: XHTML Element Quick Reference

This element can be used to incorporate applications, images, and even other (X)HTML
documents.

Define an ordered list — that is, one that uses numbers or characters as sequence indicators.

Context

Placement Block

Content li

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<ol style="list-style-type: lower-roman">
Register to vote
Research candidates
Vote on election day
Complain about election results
Rinse, repeat

There is no equivalent to the caption element in a table available for lists, but you can associate
a header directly with the list by placing both inside a dedicated div element.

See also .

<optgroup>
Group form selection options into a hierarchical structure.

Context

Parent select

Content option

646

Appendix A: XHTML Element Quick Reference

Attributes

Required Optional

label="<text>" disabled="disabled"
Core, Internationalization, Standard events

Usage example
See <select>.

<option>
Define a form value to be selected from a list.

Context

Parents select, optgroup

Content Text

Attributes

Optional

disabled="disabled"

label="<text>"

selected="selected"

value="<text sent to application>"

Core, Internationalization, Standard events

Usage example
See <select>.

<p>
Demarcate the enclosed contents as a semantic paragraph.

647

Appendix A: XHTML Element Quick Reference

Context

Placement Block

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>It was a dark and stormy night.</p>
<p><i>No, that’s a lousy way to start a book</i>, she thought to

herself, forcefully erasing the first sentence.</p>

If a block is desired but the contents are not a paragraph, then consider div elements instead,
or pre elements for preformatted text.

<param>
Define values to be passed to a software object loaded into the document.

Context

Parent object

Attributes

Optional

id="<ID>"

name="<parameter name>"

type="<MIME type>"

value="<parameter value>"

valuetype="data|ref|object"

Core, Internationalization, Standard events

648

Appendix A: XHTML Element Quick Reference

Usage example
See <object>.

<pre>
Specify that the contents of this block should preserve the whitespace as written, instead of com-
pressing multiple spaces into one and breaking lines as dictated by the width of the container.

Context

Placement Block

Content Inline and text. Disallowed: img, object, big, small

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<pre style="font-family: serif">
Down by the salley gardens my love and I did meet;
She passed the salley gardens with little snow-white feet.
She bid me take love easy, as the leaves grow on the tree;
But I, being young and foolish, with her would not agree.</pre>

If preformatted text is desired but a monospaced font is not, CSS can be used to correct the pre-
sentation, as in the preceding example.

<q>
Demarcate text that should be quoted appropriately for the language encoding.

Context

Placement Inline

Content Inline and text

649

Appendix A: XHTML Element Quick Reference

Attributes

Optional

cite="<URL>"

Core, Internationalization, Standard events

Usage example

<p>She said <q>Bite me,</q>, and Vlad took her literally.</p>

Internet Explorer is the only major browser that does not place quotes around the text as
required by HTML 4.01 and XHTML 1.1.

<samp>
Indicate that the contents reflect sample output, such as from software.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>While working in the MacOS X Terminal, if you see <samp>command
not found</samp>, that means that you mistyped the command name.</p>

See also <kbd> and <tt>.

<script>
Define a script to be used within the document.

650

Appendix A: XHTML Element Quick Reference

Context

Placement Inline or inside <head>

Content Text

Attributes

Required Optional

type="<MIME type>" charset="<character encoding>"
defer="defer"
id="<ID>"
src="<URL>"

Usage example

<body onload="place_cursor(document.getElementById(’searchbar’))">
<script type="text/javascript">

function place_cursor(o) {
o.focus();

}
</script>
<noscript>

<p>This page best viewed with JavaScript enabled.</p>
</noscript>
<div>

<form action="/actions/do-search">
<input type="text" id="searchbar"/>

</form>
</div>

The script can be written into the document or defined outside the document and linked in via
the src attribute.

<select>
Wrap a list of options in a form, creating a drop-down list.

Context

Placement Inline

Content optgroup, option

651

Appendix A: XHTML Element Quick Reference

Attributes

Optional

disabled="disabled"

multiple="multiple" name="<select name>"

onblur="<script>"

onchange="<script>"

onfocus="<script>"

size="<number>"

tabindex="<number>"

Core, Internationalization, Standard events

Usage example

<select name="operating systems">
<optgroup label="UNIX">
<option label="HP-UX" value="HPUX">HP-UX</option>
<option label="Solaris" value="Solaris">Solaris</option>
<option label="MacOS X" value="Darwin" selected=’selected’>

MacOS X
</option>
<option label="Linux" value="Linux">Linux</option>

</optgroup>
<optgroup label="Macintosh">
<option label="MacOS Classic (through v9)" value="MacOS">

MacOS Classic (through v9)
</option>
<option label="MacOS X" value="Darwin">MacOS X</option>

</optgroup>
<optgroup label="Other">
<option label="Windows" value="Windows">Windows</option>
<option label="Amiga" value="Amiga">Amiga</option>
<option label="Mainframe" value="mainframe">Mainframe</option>

</optgroup>
</select>

In the absence of a value attribute, the contents of the <option> tag will be passed to the Web
application. It is better to use value so that the appearance of the option can be changed with-
out breaking the application.

<small>
Request that the enclosed contents be rendered with a smaller font.

652

Appendix A: XHTML Element Quick Reference

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>The oxonium ion is represented as
[H<small>₃</small>O<small>]⁺</small>.</p>

See also <big>.

Demarcate inline text for assigning attributes.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>You can use CSS to achieve
all sorts of interesting effects.</p>

See also <div> for information on assigning attributes to a block.

Demarcate text that should be rendered with strong emphasis.

653

Appendix A: XHTML Element Quick Reference

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>"There is no one better qualified to be dog
catcher than me," he reiterated.</p>

See also and .

<style>
Define style rules for the document.

Context

Parent head

Content Text

Attributes

Required Optional

type="<MIME type>" id="<ID>"
media="<media descriptor, . . . >"
title="<text>"
Internationalization

Usage example

<head>
<style type="text/css">
.booktitle { font-style: italic }

</style>
</head>

654

Appendix A: XHTML Element Quick Reference

<body>
<p>The first book I read in college was

Pride and Prejudice.</p>

Linking an external stylesheet to the document is often preferable to achieve greater consistency
across a site and limit the amount of spurious bandwidth usage. To do so, use <link>.

<sub>
Indicate text that should be rendered as a subscript.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example
See <small>.

<sup>
Indicate text that should be rendered as a superscript.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example
See <small>.

655

Appendix A: XHTML Element Quick Reference

<table>
Define content to be presented in a tabular format.

Context

Placement Block

Content caption, col, colgroup, thead, tfoot, tbody, tr

Attributes

Optional

border="<pixel length>"
cellpadding="<length (pixels or percentage)>"
cellspacing="<length (pixels or percentage)>"
frame="void|above|below|hsides|lhs|rhs|vsides|box|border"
rules="none|groups|rows|cols|all"
summary="<text>"
width="<length (pixels or percentage)>"
Core, Internationalization, Standard events

Usage example

<table>
<caption>Freedonia National Debt: 1400-1800</caption>
<col width="30%">
<colgroup style="text-align: right">
<col width="30%">
<col width="30%">

</colgroup>
<thead>
<tr><th>Decade</th><th>Debt (in Freds)</th><th>Percentage of GDP
</th></tr>

</thead>
<tfoot>
<tr><th>Decade</th><th>Debt (in Freds)</th><th>Percentage of GDP
</th></tr>

</tfoot>
<tbody>
<tr><th>1400-1410</th><td>3000</td><td>7%</td></tr>
<tr><th>1410-1420</th><td>5000</td><td>8%</td></tr>

...
<tr><th>1780-1790</th><td>425,000,000</td><td>10%</td></tr>

656

Appendix A: XHTML Element Quick Reference

<tr><th>1790-1800</th><td>500,000,000</td><td>10%</td></tr>
</tbody>

</table>

CSS provides for very granular control over table borders, both internal and external.

<tbody>
Define the main body of a table.

Context

Parent table

Content tr

Attributes

Optional

align="left|center|right|justify|char"

char="<character>"

charoff="<length (pixels or percentage)>"

valign="top|middle|bottom|baseline"

Core, Internationalization, Standard events

Usage example
See <table>.

<td>
Demarcate a data cell in a table.

Context

Parent tr

Content Block, inline, and text

657

Appendix A: XHTML Element Quick Reference

Attributes

Optional

abbr="<text>"

align="left|center|right|justify|char"

axis="<category, . . . >"

char="<character>"

charoff="<length (pixels or percentage)>"

colspan="<number>"

headers="<IDREFS>"

rowspan="<number>"

scope="row|col|rowgroup|colgroup"

valign="top|middle|bottom|baseline"

Core, Internationalization, Standard events

Usage example
See <table>.

<textarea>
Define a block for text input in a form.

Context

Placement Inline

Content Text

Attributes

Required Optional

cols="<number>"
rows="<number>"

accesskey="<character>"
disabled="disabled"
name="<textarea name>"
onblur="<script>"
onchange="<script>"

658

Appendix A: XHTML Element Quick Reference

onfocus="<script>"
onselect="<script>"
readonly="readonly"
tabindex="<number>"
Core, Internationalization, Standard events

Usage example

<textarea name="address" cols=’50’ rows=’5’>Please replace this
text with your billing address.</textarea>

For a single line of text input, use <input type="text"> instead.

<tfoot>
Define the footer for a table.

Context

Parent table

Content tr

Attributes

Optional

align="left|center|right|justify|char"
char="<character>"
charoff="<length (pixels or percentage)>"
valign="top|middle|bottom|baseline"
Core, Internationalization, Standard events

Usage example
See <table>.

Defining footers and headers separately from the body for a table enables the browser to render
them on each page for a long table.

<th>
Demarcate a data cell in a table that serves as a heading.

659

Appendix A: XHTML Element Quick Reference

Context

Parent tr

Content Block, inline, and text

Attributes

Optional

abbr="<text>"

align="left|center|right|justify|char"

axis="<category, . . . >"

char="<character>"

charoff="<length (pixels or percentage)>"

colspan="<number>"

headers="<IDREFS>"

rowspan="<number>"

scope="row|col|rowgroup|colgroup"

valign="top|middle|bottom|baseline"

Core, Internationalization, Standard events

Usage example
See <table>.

<thead>
Define the header for a table.

Context

Parent table

Content tr

660

Appendix A: XHTML Element Quick Reference

Attributes

Optional

align="left|center|right|justify|char"
char="<character>"
charoff="<length (pixels or percentage)>"
valign="top|middle|bottom|baseline"
Core, Internationalization, Standard events

Usage example
See <table>.

<title>
Define the title for a document.

Context

Parent head

Content Text

Attributes

Optional

Internationalization

Usage example

<head>
<title>Flora and Fauna of Freedonia</title>

</head>

A meaningful title is very useful when browsing search engine results.

<tr>
Define a row of data in a table.

661

Appendix A: XHTML Element Quick Reference

Context

Parents table, thead, tfoot>

Content th, td

Attributes

Optional

align="left|center|right|justify|char"
char="<character>"
charoff="<length (pixels or percentage)>"
valign="top|middle|bottom|baseline"
Core, Internationalization, Standard events

Usage example
See <table>.

<tt>
Demarcate text that should be rendered in a monospace typeface.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>If you want to IM me, my username is <tt>frd42</tt>.</p>

Consider, instead, a semantic element such as samp, var, or kbd when appropriate.

Define an unordered list.

662

Appendix A: XHTML Element Quick Reference

Context

Placement Block

Content li

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<div>
<h3>Grocery list</h3>
<ul style="list-style-type: square">

Milk
Paper towels
Salt

</div>

<var>
Demarcate text as a variable name.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core, Internationalization, Standard events

Usage example

<p>Changing the environment variable <var>HOME</var> can have unex-
pected consequences.</p>

See also <kbd>, <samp>, and <tt>.

663

Appendix A: XHTML Element Quick Reference

Event Attributes
This section lists those attributes relevant to providing script hooks for responding to events such
as page loading and mouse movements.

Standard events
The standard event attributes are listed in the table that follows.

Attribute Triggered By

onclick Pointer button was clicked.

ondblclick Pointer button was double-clicked.

onmousedown Pointer button was pressed down.

onmouseup Pointer button was released.

onmouseover Pointer was moved into element.

onmousemove Pointer was moved within element.

onmouseout Pointer was moved away from element.

onkeypress Key was pressed and released.

onkeydown Key was pressed.

onkeyup Key was released.

Other Events
The following table lists less common event attributes.

Attribute Triggered By

onload Document has been loaded.

onunload Document has been removed.

onblur Element lost focus.

onfocus Element gained focus.

onreset Form was reset.

onsubmit Form was submitted.

onchange Form element value changed.

onselect Text in a form field has been selected.

664

Appendix A: XHTML Element Quick Reference

Other Common Attributes
This section lists other attributes that are supported by most elements.

Core attributes

Attribute Description

id ID value unique to this document

class Space-separated list of classes useful for selecting this
element for style and other purposes

style Local style information

title Advisory title, typically rendered by a graphical browser
when the pointer is over the element

Internationalization attributes

Attribute Description

lang Language code for this element’s contents

dir Direction (ltr or rtl) for the text

Common color codes
For a complete overview of color codes, see Chapter 12, ‘‘Colors and Images.’’

665

HTML
Special Characters
Quick Reference

IN THIS APPENDIX
Essential Entities

En and Em Entities

Copyright, Trademark, and Registered Entities

Currency Entities

Quote Mark and Apostrophe Entities

Arrow Entities

Accented Character Entities

Greek Symbol Entities

Mathematical Symbol Entities

Miscellaneous Entities

This appendix lists the various entities — codes for inserting special characters in your
documents — available in HTML. The listings are broken down by category of entity, and
each table lists the character description, the decimal code, and the mnemonic code for each entity.

Cross-Ref
More information on character encodings and special characters can be found in Chapter 14. �

Table B-1 lists the most common entities.

TABLE B-1

Essential Entities

Decimal Entity Mnemonic Entity Character

" " Double quote mark

& & Ampersand

< < Less than symbol

> > Greater than symbol

 Nonbreaking space

667

Appendix B: HTML Special Characters Quick Reference

Table B-2 lists the entities for en and em elements.

TABLE B-2

En and Em Entities

Decimal Entity Mnemonic Entity Character

    En space

    Em space

– – En dash

— — Em dash

Table B-3 lists the entities pertinent to protection of intellectual property.

TABLE B-3

Copyright, Trademark, and Registered Entities

Decimal Entity Mnemonic Entity Character

© © Copyright symbol

® ® Registered trademark symbol

™ ™ Trademark symbol

Table B-4 lists many of the most common currency symbols.

TABLE B-4

Currency Entities

Decimal Entity Mnemonic Entity Character

¢ ¢ Cent symbol

£ £ English pound

¤ ¤ General currency

¥ ¥ Japanese yen

€ € European euro

668

Appendix B: HTML Special Characters Quick Reference

Table B-5 lists the entities for real quotes.

TABLE B-5

Quote Mark and Apostrophe Entities

Decimal Entity Mnemonic Entity Character

‘ ‘ Left/Opening single-quote

’ ’ Right/Closing single-quote and apostrophe

“ “ Left/Opening double-quote

” ” Right/Closing double-quote

Table B-6 lists the entities for a variety of arrow symbols.

TABLE B-6

Arrow Entities

Decimal Entity Mnemonic Entity Character

← ← Left arrow

↑ ↑ Up arrow

→ → Right arrow

↓ ↓ Down arrow

↔ ↔ Left right arrow

↵ ↵ Down arrow with corner leftwards

⇐ ⇐ Left double arrow

⇑ ⇑ Up double arrow

⇒ ⇒ Right double arrow

⇓ ⇓ Down double arrow

⇔ ⇔ Left right double arrow

669

Appendix B: HTML Special Characters Quick Reference

Table B-7 lists the accented character entities.

TABLE B-7

Accented Character Entities

Decimal Entity Mnemonic Entity Character

À À Latin capital letter A with grave

Á Á Latin capital letter A with acute

Â Â Latin capital letter A with circumflex

Ã Ã Latin capital letter A with tilde

Ä Ä Latin capital letter A with diaeresis

Å Å Latin capital letter A with ring above

Æ Æ Latin capital letter AE

Ç Ç Latin capital letter C with cedilla

È È Latin capital letter E with grave

É É Latin capital letter E with acute

Ê Ê Latin capital letter E with circumflex

Ë Ë Latin capital letter E with diaeresis

Ì Ì Latin capital letter I with grave

Í Í Latin capital letter I with acute

Î Î Latin capital letter I with circumflex

Ï Ï Latin capital letter I with diaeresis

Ð Ð Latin capital letter ETH

Ñ Ñ Latin capital letter N with tilde

Ò Ò Latin capital letter O with grave

Ó Ó Latin capital letter O with acute

Ô Ô Latin capital letter O with circumflex

Õ Õ Latin capital letter O with tilde

Ö Ö Latin capital letter O with diaeresis

Ø Ø Latin capital letter O with stroke

Ù Ù Latin capital letter U with grave

Ú Ú Latin capital letter U with acute

Û Û Latin capital letter U with circumflex

670

Appendix B: HTML Special Characters Quick Reference

Decimal Entity Mnemonic Entity Character

Ü Ü Latin capital letter U with diaeresis

Ý Ý Latin capital letter Y with acute

Þ Þ Latin capital letter THORN

ß ß Latin small letter sharp s = ess-zed

à à Latin small letter a with grave

á á Latin small letter a with acute

â â Latin small letter a with circumflex

ã ã Latin small letter a with tilde

ä ä Latin small letter a with diaeresis

å å Latin small letter a with ring above

æ æ Latin small letter ae

ç ç Latin small letter c with cedilla

è è Latin small letter e with grave

é é Latin small letter e with acute

ê ê Latin small letter e with circumflex

ë ë Latin small letter e with diaeresis

ì ì Latin small letter i with grave

í í Latin small letter i with acute

î î Latin small letter i with circumflex

ï ï Latin small letter i with diaeresis

ð ð Latin small letter eth

ñ ñ Latin small letter n with tilde

ò ò Latin small letter o with grave

ó ó Latin small letter o with acute

ô ô Latin small letter o with circumflex

õ õ Latin small letter o with tilde

ö ö Latin small letter o with diaeresis

ø ø Latin small letter o with stroke

ù ù Latin small letter u with grave

ú ú Latin small letter u with acute

continued

671

Appendix B: HTML Special Characters Quick Reference

TABLE B-7 (continued)

Decimal Entity Mnemonic Entity Character

û û Latin small letter u with circumflex

ü ü Latin small letter u with diaeresis

ý ý Latin small letter y with acute

þ þ Latin small letter thorn

ÿ ÿ Latin small letter y with diaeresis

Table B-8 lists various Greek symbol entities.

TABLE B-8

Greek Symbol Entities

Decimal Entity Mnemonic Entity Character

Α Α Greek capital letter alpha

Β Β Greek capital letter beta

Γ Γ Greek capital letter gamma

Δ Δ Greek capital letter delta

Ε Ε Greek capital letter epsilon

Ζ Ζ Greek capital letter zeta

Η Η Greek capital letter eta

Θ Θ Greek capital letter theta

Ι Ι Greek capital letter iota

Κ Κ Greek capital letter kappa

Λ Λ Greek capital letter lambda

Μ Μ Greek capital letter mu

Ν Ν Greek capital letter nu

Ξ Ξ Greek capital letter xi

Ο Ο Greek capital letter omicron

Π Π Greek capital letter pi

Ρ Ρ Greek capital letter rho

Σ Σ Greek capital letter sigma

672

Appendix B: HTML Special Characters Quick Reference

Decimal Entity Mnemonic Entity Character

Τ Τ Greek capital letter tau

Υ Υ Greek capital letter upsilon

Φ Φ Greek capital letter phi

Χ Χ Greek capital letter chi

Ψ Ψ Greek capital letter psi

Ω Ω Greek capital letter omega

α α Greek small letter alpha

β β Greek small letter beta

γ γ Greek small letter gamma

δ δ Greek small letter delta

ε ε Greek small letter epsilon

ζ ζ Greek small letter zeta

η η Greek small letter eta

θ θ Greek small letter theta

ι ι Greek small letter iota

κ κ Greek small letter kappa

λ λ Greek small letter lambda

μ μ Greek small letter mu

ν ν Greek small letter nu

ξ ξ Greek small letter xi

ο ο Greek small letter omicron

π π Greek small letter pi

ρ ρ Greek small letter rho

ς ς Greek small letter final sigma

σ σ Greek small letter sigma

τ τ Greek small letter tau

υ υ Greek small letter upsilon

φ φ Greek small letter phi

χ χ Greek small letter chi

ψ ψ Greek small letter psi

continued

673

Appendix B: HTML Special Characters Quick Reference

TABLE B-8 (continued)

Decimal Entity Mnemonic Entity Character

ω ω Greek small letter omega

ϑ ϑ Greek small letter theta symbol

ϒ ϒ Greek upsilon with hook symbol

ϖ ϖ Greek pi symbol

Table B-9 lists a variety of mathematical symbols.

TABLE B-9

Mathematical Symbol Entities

Decimal Entity Mnemonic Entity Character

× × Multiplication sign

÷ &division; Division sign

∀ ∀ For all

∂ ∂ Partial differential

∃ ∃ There exists

∅ ∅ Empty set = null set = diameter

∇ ∇ Nabla = backward difference

∈ ∈ Element of

∉ ∉ Not an element of

∋ ∋ Contains as member

∏ ∏ n-ary product = product sign

∑ ∑ n-ary summation

− − Minus sign

∗ ∗ Asterisk operator

√ √ Square root = radical sign

∝ ∝ Proportional to

∞ ∞ Infinity

674

Appendix B: HTML Special Characters Quick Reference

Decimal Entity Mnemonic Entity Character

∠ ∠ Angle

∧ ∧ Logical and = wedge

∨ ∨ Logical or = vee

∩ ∩ Intersection = cap

∪ ∪ Union = cup

∫ ∫ Integral

∴ ∴ Therefore

∼ ∼ Tilde operator = varies with = similar to

≅ ≅ Approximately equal to

≈ ≈ Almost equal to = asymptotic to

≠ ≠ Not equal to

≡ ≡ Identical to

≤ ≤ Less than or equal to

≥ ≥ Greater than or equal to

⊂ ⊂ Subset of

⊃ ⊃ Superset of

⊄ ⊄ Not a subset of

⊆ ⊆ Subset of or equal to

⊇ ⊇ Superset of or equal to

⊕ ⊕ Circled plus = direct sum

⊗ ⊗ Circled times = vector product

⊥ ⊥ Up tack = orthogonal to = perpendicular

⋅ ⋅ Dot operator

⌈ ⌈ Left ceiling

⌉ ⌉ Right ceiling

⌊ ⌊ Left floor

⌋ ⌋ Right floor

〈 ⟨ Left-pointing angle bracket

〉 ⟩ Right-pointing angle bracket

675

Appendix B: HTML Special Characters Quick Reference

Table B-10 lists other miscellaneous entities.

TABLE B-10

Miscellaneous Entities

Decimal Entity Mnemonic Entity Character

¡ ¡ Inverted exclamation mark

¦ ¦ Broken bar = broken vertical bar

§ § Section sign

¨ ¨ Diaeresis = spacing diaeresis

ª ª Feminine ordinal indicator

« « Left-pointing double angle quotation mark = left pointing guillemet

¬ ¬ Not sign

­ ­ Soft hyphen = discretionary hyphen

¯ ¯ Macron = spacing macron = overline = APL overbar

° ° Degree sign

± ± Plus-minus sign = plus-or-minus sign

² ² Superscript two = superscript digit two = squared

³ ³ Superscript three = superscript digit three = cubed

´ ´ Acute accent = spacing acute

µ µ Micro sign

¶ ¶ Pilcrow sign = paragraph sign

· · Middle dot = Georgian comma = Greek middle dot

¸ ¸ Cedilla = spacing cedilla

¹ ¹ Superscript one = superscript digit one

º º Masculine ordinal indicator

» » Right-pointing double angle quotation mark = right pointing guillemet

¼ ¼ Vulgar fraction one quarter = fraction one quarter

½ ½ Vulgar fraction one half = fraction one half

¾ ¾ Vulgar fraction three quarters = fraction three quarters

¿ ¿ Inverted question mark = turned question mark

Œ Œ Latin capital ligature OE

œ œ Latin small ligature oe

676

Appendix B: HTML Special Characters Quick Reference

Decimal Entity Mnemonic Entity Character

Š Š Latin capital letter S with caron

š š Latin small letter s with caron

Ÿ Ÿ Latin capital letter Y with diaeresis

ˆ ˆ Modifier letter circumflex accent

˜ ˜ Small tilde

    Thin space

‌ ‌ Zero width non-joiner

‍ ‍ Zero width joiner

‎ ‎ Left-to-right mark

‏ ‏ Right-to-left mark

‚ ‚ Single low-9 quotation mark

„ „ Double low-9 quotation mark

† † Dagger

‡ ‡ Double dagger

‰ ‰ Per mille sign

‹ ‹ Single left-pointing angle quotation mark

› › Single right-pointing angle quotation mark

677

CSS 2.1 Properties
Quick Reference

IN THIS APPENDIX
Property Listings

Property List: Quick
Reference

Background

List

Generated content

Font and text

Text direction

Block

Positioning

Borders

Table

Printing

Miscellaneous

This appendix follows CSS 2.1, which is a specification intended
to represent the most commonly supported properties in modern
browsers.

Note that aural stylesheet properties are not covered in this appendix
because adequate coverage of their use and capabilities goes well beyond a
quick reference. For information on aural properties and their use, visit The
Alliance for Technology Access website at www.ataccess.org.

Unfortunately, solid support for many of the CSS properties is spotty, so
testing on a wide variety of Web browsers is recommended. In addition,
several websites provide extensive information on CSS support across the
popular browsers.

Cross-Ref
For an overview of CSS selectors, see Appendix D. �

Property Listings
In each table that follows, words under Supported values that are capitalized
are placeholders for either a set of possible values or values drawn from a
related property. Examples of placeholders include the following:

� Length — Number followed by a unit of measurement, such as ‘‘px’’
for pixel

� Percentage — Number followed by a percent sign

� Integer — Whole number

679

Appendix C: CSS 2.1 Properties Quick Reference

Inherited refers to whether a given property will be drawn from the element’s parents if it is not
explicitly provided.

Property List: Quick Reference
The following list provides an overview of the full list of CSS properties. Use this list as a refer-
ence to the assorted attributes listed within the appendix.

Background

background-image

background-repeat

background-attachment

background-position

background-color

background

List

list-style-type

list-style-position

list-style-image

list-style

Generated content

content

quotes

counter-increment

counter-reset

Font and text

text-align

text-decoration

text-indent

text-transform

color

font-family

font-size

font-style

font-variant

font-weight

font

680

Appendix C: CSS 2.1 Properties Quick Reference

letter-spacing

word-spacing

white-space

Text direction

unicode-bidi

direction

Block

margin-left, margin-right, margin-top, margin-bottom

margin

padding-left, padding-right, padding-top, padding-bottom

padding

clip

overflow

height, width

max-height, max-width

min-height, min-width

line-height

vertical-align

Positioning

visibility

display

position

float

top, bottom, left, right

z-index

clear

Borders

border-color, border-top-color, border-bottom-color, border-left-color, border-right-color

border-style, border-top-style, border-bottom-style, border-left-style, border-right-style

border-width, border-top-width, border-bottom-width, border-left-width, border-right-width

border

outline-color

outline-style

outline-width

outline

681

Appendix C: CSS 2.1 Properties Quick Reference

Table

table-layout

border-collapse

border-spacing

empty-cells

caption-side

Printing

page-break-after, page-break-before

page-break-inside

orphans

widows

Miscellaneous

cursor

Background
Listings of the background properties follow.

background-image
Place an image behind an element (typically the body of a document).

table { background-image: url("/images/draft.gif"); }

Supported values url(), none, inherit

Default value none

Inherited No

Applies to All

background-repeat
Define the background image behavior if it fails to fill its element.

table { background-repeat: none; }

Supported values repeat, repeat-x, repeat-y, no-repeat, inherit

Default value repeat

Inherited No

Applies to All

682

Appendix C: CSS 2.1 Properties Quick Reference

background-attachment
Specify whether the background image scrolls with the enclosing element.

table { background-attachment: fixed; }

Supported values scroll, fixed, inherit

Default value scroll

Inherited No

Applies to All

Note(s) Browsers not required to support ‘‘fixed’’

background-position
Declare the initial position of a background image.

table { background-position 25% 25%; }

Supported values Percentage, Length, top, center, bottom, left, right,
inherit

Default value 0 0

Inherited No

Applies to All

Note(s) If two values are supplied, the first is a horizontal position and
the second vertical. If one numeric value is supplied, it is
treated as a horizontal position, and vertical will be 50 percent.

background-color
Define the background color for an element.

body { background-color: black; }

Supported values Color, transparent, inherit

Default value transparent

Inherited No

Applies to All

683

Appendix C: CSS 2.1 Properties Quick Reference

background
Consolidate background properties.

table { background: url("/images/draft.gif") none fixed 25% 25%; }

Supported values Color, Image, Repeat, Attachment, Position, inherit

Default value transparent, none, repeat, scroll, 0 0

Inherited No

Applies to All

List
These properties apply to the rendering of lists. See also counter-increment and
counter-reset in the section ‘‘Generated Content’’ later in this appendix.

list-style-type
Select the bullet markers for a list.

ul.nobullet { list-style-type: none; }

Supported values disc, circle, square, decimal, decimal-leading-zero,
lower-roman, upper-roman, lower-greek, lower-latin,
upper-latin, armenian, georgian, lower-alpha,
upper-alpha, none, inherit

Default value disc

Inherited Yes

Applies to li

list-style-position
Indicate whether the list markers should be treated as internal to the box enclosing each
list item.

ul.paragraphs { list-style-position: inside; }

Supported values inside, outside, inherit

Default value outside

Inherited Yes

Applies to li

684

Appendix C: CSS 2.1 Properties Quick Reference

list-style-image
Refer to an image to be used for bullet markers.

ul { list-style-image: url("/images/daggers.gif"); }

Supported values url(), none, inherit

Default value none

Inherited Yes

Applies to li

list-style
Consolidate list-style properties.

ul { list-style: circle outside url("/images/daggers.gif"); }

Supported values Type Position Image, inherit

Default value disc outside none

Inherited Yes

Applies to li

Note(s) If both a type and an image are supplied, the list-style type will
be used if the image cannot be retrieved.

Generated content
CSS provides for the insertion of new text in certain locations via the content property.

The other properties in this section affect the text inserted by the content property by modify-
ing the open/close quotes or by impacting a named counter value. Many of these properties and
methods are not widely supported.

content
Text to be displayed by autogeneration properties.

.quote:before { content: open-quote; }

.quote:after { content: close-quote; }

Supported values normal, String, url(), counter(), counters(), attr(),
open-quote, close-quote, no-open-quote,
no-close-quote, inherit

Default value Normal

Inherited No

Applies to :before, :after pseudo-elements

685

Appendix C: CSS 2.1 Properties Quick Reference

quotes
Define quotation marks for use with q elements and content properties.

body { quotes: "\00AB" "\00BB"; }

Supported values String, none, inherit

Default value Browser-defined

Inherited Yes

Applies to All

counter-increment
Indicate that the named counter should be incremented by one or the numeric value provided.

div.section { counter-increment: sectionheading; }

Supported values Identifier Integer, none, inherit

Default value none

Inherited No

Applies to All

counter-reset
Indicate that the named counter should be set back to zero or the numeric value provided.

div.section { counter-reset: sectionsubheading; }

Supported values Identifier Integer, none, inherit

Default value none

Inherited No

Applies to All

Font and text
These properties are used to specify the way in which text is rendered.

text-align
Specify the text alignment within the block.

pre.poem { text-align: center; }

686

Appendix C: CSS 2.1 Properties Quick Reference

Supported values center, left, right, justify, inherit

Default value left (but see Notes in this table)

Inherited Yes

Applies to Block elements, td, th, and form input fields

Note(s) The default value is ‘‘correct’’ if direction: rtl is set.

text-decoration
Augment the text with underlining or similar properties.

p.annoying { text-decoration: line-through blink; }

Supported values none, underline, overline, line-through, blink,
inherit

Default value none

Inherited No

Applies to All

Note(s) Several decorations may be listed with whitespace separation.

text-indent
Specify the indentation for the first line in a block.

p { text-indent: 1em; }

Supported values Length, Percentage, inherit

Default value 0

Inherited Yes

Applies to Block elements, td, th, and form input fields.

text-transform
Convert text to uppercase or lowercase.

span.customername { text-transform: uppercase; }

687

Appendix C: CSS 2.1 Properties Quick Reference

Supported values capitalize, uppercase, lowercase, none, inherit

Default value none

Inherited Yes

Applies to All

color
Define text color.

div.hardtoread { color: yellow; }

Supported values Color, inherit

Default value Browser-defined

Inherited Yes

Applies to All

Note(s) Any borders in this scope will default to this color.

font-family
Define the desired typeface.

body { font-family: Garamond, serif; }

Supported values Family (one or more comma-separated values), inherit

Default value Browser-defined

Inherited Yes

Applies to All

Note(s) Use quotes around font family names that include spaces. Be
sure to provide generic families as alternatives should the
browser not be able to locate the font you prefer.

font-size
Specify the type size.

caption { font-size: x-large; }

688

Appendix C: CSS 2.1 Properties Quick Reference

Supported values Length, Percentage, xx-large, x-large, large, medium,
small, x-small, xx-small, larger, smaller, inherit

Default value medium

Inherited Yes

Applies to All

font-style
Render the enclosed text as italic, oblique, or normal.

.booktitle { font-style: italic; }

Supported values normal, italic, oblique, inherit

Default value normal

Inherited Yes

Applies to All

font-variant
Render the enclosed text as small capitals or normal.

span.manufacturername { font-variant: small-caps; }

Supported values normal, small-caps, inherit

Default value normal

Inherited Yes

Applies to All

font-weight
Specify the ‘‘boldness’’ of text.

caption { font-weight: 900; }

689

Appendix C: CSS 2.1 Properties Quick Reference

Supported values normal, bolder, bold, lighter, 100, 200, 300, 400, 500,
600, 700, 800, 900

Default value normal

Inherited Yes

Applies to All

Note(s) normal is equivalent to 400; bold to 700.

font
Consolidate font properties or specify system fonts.

h6 { font: menu; }

Supported values caption, icon, menu, message-box, small-caption,
status-bar, inherit (and see Note(s))

Default value See font-style, font-variant, font-weight, font-size

Inherited Yes

Applies to All

Note(s) The value can be one of the preceding or a combination of the
other font properties with line-height thrown in to confuse
things.

letter-spacing
Add to the spacing between letters.

blockquote { letter-spacing: 0.1em; }

Supported values Length, normal, inherit

Default value normal

Inherited Yes

Applies to All

Note(s) The value may be negative.

690

Appendix C: CSS 2.1 Properties Quick Reference

word-spacing
Add to the spacing between words.

h2 { word-spacing: 1em; }

Supported values Length, normal, inherit

Default value normal

Inherited Yes

Applies to All

white-space
Specify the handling of whitespace, including line wrapping.

blockquote.poem { white-space: pre; }

Supported values normal, pre, nowrap, pre-wrap, pre-line, inherit

Default value normal

Inherited Yes

Applies to All

Text direction
These properties are required to deal with the problems arising from the fact that some languages
read right to left while others read left to right.

unicode-bidi
This, combined with the direction property, handles the directionality of text for a document.
This property is useful only when two languages of different directionality are present.

span.arabic { unicode-bidi: embed; direction: rtl; }
span.english { unicode-bidi: embed; direction: ltr; }

Supported values normal, embed, bidi-override, inherit

Default value normal

Inherited No

Applies to All

691

Appendix C: CSS 2.1 Properties Quick Reference

direction
Define the direction for the enclosed text.

p.english { direction: ltr; }

Supported values ltr, rtl, inherit

Default value ltr

Inherited Yes

Applies to All except for inline elements with unicode-bidi: normal

Block
The key differentiator between padding and margin: The padding is inside any border around a
block, and the margin is outside that border.

margin-left, margin-right, margin-top, margin-bottom
Define the size of the margin on a given side of a block.

blockquote { margin-left: 10%; }

Supported values Length, Percentage, auto

Default value 0

Inherited No

Applies to All except for table components (e.g., td, tfoot, tr)

margin
Consolidate margin widths.

p { margin: 1em 0 1em 0; }

Supported values Length, Percentage, auto (up to four values defining up to the
four sides)

Default value 0 0 0 0

Inherited No

Applies to All except for table components (that is, td, tfoot, tr)

Note(s) Order of values: top, right, bottom, left.

692

Appendix C: CSS 2.1 Properties Quick Reference

padding-left, padding-right, padding-top, padding-bottom
Define the size of the padding on a given side of a block.

div.withborder { padding-top: 2%; }

Supported values Length, Percentage, inherit

Default value 0

Inherited No

Applies to All excluding table components (but including td, th)

padding
Consolidate padding widths.

div.withborder { padding: 2% 0 0 0; }

Supported values Length, Percentage, inherit (up to four values)

Default value 0 0 0 0

Inherited No

Applies to All excluding table components (but including td and th)

Note(s) Order of values: top, right, bottom, left.

clip
Define a boundary for an element outside of which any presentation (text, border) should
be clipped.

blockquote { clip: rect(5px, 20px, 20px, 5px); overflow: scroll; }

Supported values Shape, auto, inherit

Default value auto

Inherited No

Applies to Absolutely positioned elements

Note(s) If overflow is visible, this has no effect. The only recognized
shape is rect().

693

Appendix C: CSS 2.1 Properties Quick Reference

overflow
Specify what happens when a block’s content is larger than the clipping area.

blockquote { clip: rect(5px, 20px, 20px, 5px); overflow: scroll; }

Supported values visible, hidden, scroll, auto, inherit

Default value visible

Inherited No

Applies to Block elements, img, object, td, th

height, width
Specify the height or width of an element.

img.logo { height: 5cm; width: 5cm; }

Supported values Length, Percentage, auto, inherit

Default value auto

Inherited No

Applies to Block elements, img, object, and form input fields

max-height, max-width
Constrain element size.

table { max-width: 50%; }

Supported values Length, Percentage, none, inherit

Default value none

Inherited No

Applies to Block elements, img, object, and form input fields

min-height, min-width
Define a minimum element size.

textarea { min-width: 25%; }

694

Appendix C: CSS 2.1 Properties Quick Reference

Supported values Length, Percentage, inherit

Default value 0

Inherited No

Applies to Block elements, img, object, and form input fields

line-height
Define line height. For block elements, this is the minimal line height; for inline, it is the spe-
cific height.

p { line-height: 150%; }

Supported values Number, Length, Percentage, normal, inherit

Default value normal

Inherited Yes

Applies to All

Note(s) Unless an absolute measurement such as ‘‘cm’’ is used, this will
be relative to the font size.

vertical-align
Define the vertical-alignment characteristics of this element relative to its line box (when top or
bottom are specified) or its parent.

span.superscript { vertical-align: super; }

Supported values Length, Percentage, baseline, sub, super, top, text-top,
middle, bottom, text-bottom, inherit

Default value baseline

Inherited No

Applies to Inline, td, th

Positioning
The preceding block properties specify the internal characteristics of the boxes that are used to
lay out a page. The properties in this section can be used to describe the desired positions of
those boxes.

695

Appendix C: CSS 2.1 Properties Quick Reference

visibility
Specify whether an element should be visible.

li.answer { visibility: hidden; }

Supported values visible, hidden, collapse, inherit

Default value visible

Inherited Yes

Applies to All

Note(s) Unless display: none is set, the element will still occupy
space, even if hidden.

display
Specify how an element should be presented.

.invisible { display: none; }

Supported values none, inline, block, list-item, run-in, inline-block,
table, inline-table, table-row-group,
table-header-group, table-footer-group, table-row,
table-column-group, table-column, table-cell,
table-caption, inherit

Default value inline

Inherited No

Applies to All

Note(s) Other than removing objects from the document flow by setting
display to none, this property is most valuable for defining
the presentation of XML documents with no inherent style.

position
Specify the algorithm to be used for placing this element’s containing box on the page.

div#menu { position: absolute; top: 3.8cm; left: 0;}

696

Appendix C: CSS 2.1 Properties Quick Reference

Supported values static, relative, absolute, fixed, inherit

Default value static

Inherited No

Applies to All

float
For elements that are not absolutely positioned, define their relationship to elements surround-
ing them.

div#logo { float: left; }

Supported values left, right, none, inherit

Default value none

Inherited No

Applies to All elements without display: none

top, bottom, left, right
For absolutely positioned elements, define the distance to the enclosing box’s edges.

div#menu { position: absolute; top: 3.8cm; left: 0;}

Supported values Length, Percentage, auto, inherit

Default value auto

Inherited No

Applies to Positioned elements

z-index
Define stacking order for overlapping elements.

div#logo { z-index: 99; }

697

Appendix C: CSS 2.1 Properties Quick Reference

Supported values Integer, auto, inherit

Default value auto

Inherited No

Applies to Positioned elements

Note(s) The higher the number, the higher on the stack.

clear
Specify which sides of an element’s box may not be adjacent to a floating element.

h1 { clear: both; }

Supported values none, left, right, both, inherit

Default value none

Inherited No

Applies to Block elements

Note(s) This element will be shifted to be below any floater.

Borders
These properties specify borders and outlines for the boxes used to lay out the page. Note that
outlines are not widely supported.

border-color, border-top-color, border-bottom-color, border-left-color,
border-right-color
Specify border colors.

div#logo { border-color: green; }

Supported values Color, transparent, inherit

Default value Element color property value

Inherited No

Applies to All

698

Appendix C: CSS 2.1 Properties Quick Reference

border-style, border-top-style, border-bottom-style, border-left-style,
border-right-style
Specify the border design.

div#logo { border-style: groove; }

Supported values none, hidden, dotted, dashed, solid, double, groove,
ridge, inset, outset, inherit

Default value none

Inherited No

Applies to All

border-width, border-top-width, border-bottom-width, border-left-width,
border-right-width
Specify the border size.

div#logo { border-width: thin; }

Supported values Length, thin, medium, thick, inherit

Default value medium

Inherited No

Applies to All

border
Consolidate border properties.

div#logo { border: green groove thin; }

Supported values Color Style Width, inherit

Default value color, none, medium

Inherited No

Applies to All

699

Appendix C: CSS 2.1 Properties Quick Reference

outline-color
Specify outline color.

span.acronym { outline-color: blue; }

Supported values Color, invert, inherit

Default value invert

Inherited No

Applies to All

outline-style
Specify the outline style.

span.acronym { outline-style: dotted; }

Supported values none, dotted, dashed, solid, double, groove, ridge,
inset, outset, inherit

Default value none

Inherited No

Applies to All

outline-width
Specify the outline width.

span.acronym { outline-width: thin; }

Supported values Length, thin, medium, thick, inherit

Default value medium

Inherited No

Applies to All

outline
Consolidate outline properties.

span.acronym { outline: blue dotted thin; }

700

Appendix C: CSS 2.1 Properties Quick Reference

Supported values Color Style Width, inherit

Default value invert, none, medium

Inherited No

Applies to All

Table
These properties specify how tables are rendered, primarily table borders.

table-layout
Specify a table layout algorithm. If auto, the table’s contents will be scanned before generation
to calculate the proper width of each column.

table.huge { table-layout: fixed; }

Supported values auto, fixed, inherit

Default value auto

Inherited No

Applies to table

border-collapse
Specify whether adjacent table cell borders should be consolidated.

table { border-collapse: collapse; }

Supported values collapse, separate, inherit

Default value separate

Inherited Yes

Applies to table

border-spacing
Define the space between internal table borders.

table { border-spacing: 2pt 4pt; }

701

Appendix C: CSS 2.1 Properties Quick Reference

Supported values Length (1 or 2 values), inherit

Default value 0

Inherited Yes

Applies to table

Note(s) If two values, the first is horizontal, the second vertical;
otherwise, the value is applied to both dimensions.

empty-cells
Specify whether empty cells should be rendered with background and border.

table { empty-cells: hide; }

Supported values show, hide, inherit

Default value show

Inherited Yes

Applies to td, th

caption-side
Specify whether a caption is placed above or below its table.

table.figure { caption-side: bottom; }

Supported values top, bottom, inherit

Default value top

Inherited Yes

Applies to caption

Printing
These properties provide instructions to the user agent about how the page should be handled
when printed. These can be used to help prevent inappropriate page breaks and otherwise format
a printed page.

702

Appendix C: CSS 2.1 Properties Quick Reference

page-break-after, page-break-before
Specify whether a printed page break should occur before or after this block element.

h1 { page-break-after: avoid; }

Supported values auto, always, avoid, left, right, inherit

Default value auto

Inherited No

Applies to Block elements

page-break-inside
Specify a preference regarding page breaks internal to a block element.

table { page-break-inside: avoid; }

Supported values avoid, auto, inherit

Default value auto

Inherited Yes

Applies to Block elements

orphans
Define the minimum number of lines in a paragraph that must be left at the bottom of a page.
Any fewer and the entire paragraph will wrap to the following page.

body { orphans: 3; }

Supported values Integer, inherit

Default value 2

Inherited Yes

Applies to Block elements

widows
Define the minimum number of lines in a paragraph that must be available for the top of a page.
Any fewer and the entire paragraph will wrap to that page.

body { widows: 4; }

703

Appendix C: CSS 2.1 Properties Quick Reference

Supported values Integer, inherit

Default value 2

Inherited Yes

Applies to Block elements

Miscellaneous
The cursor property specifies what the user agent cursor should be when it is over the element
to which the property is applied.

cursor
Define the type of cursor to be used when the mouse is over this element.

body.annoyuser { cursor: wait; }

Supported values auto, crosshair, default, pointer, move, nw-resize,
n-resize, ne-resize, e-resize, se-resize, s-resize,
sw-resize, w-resize, text, wait, help, progress,
inherit, url()

Default value auto

Inherited Yes (but see Note(s))

Applies to All

Note(s) The specification states that this is inherited, but browsers do
not consistently do so. Use the inherit value if you want the
parent’s cursor to carry over to elements such as hyperlinks that
would ordinarily have their own cursor type.

704

CSS 2.1 Selectors
Quick Reference

IN THIS APPENDIX
Basic Element Selectors

Descendant Selectors

Child Selectors

Adjacent Sibling Selectors

Class Selectors

ID Selectors

Attribute Selectors

CSS selectors are specific patterns used to match elements that
will have the corresponding properties applied to them. CSS
has many different patterns to match many different aspects of

elements — their name/type, class, ID, place in the document hierarchy,
and more.

In addition to using a single pattern to match elements, you can also com-
bine patterns to create more specific matches. For example, the following
selector matches all h1 elements:

h1 { properties }

If you need more specificity, you can add a class selector as in the following
example, which matches all h2 elements with a class of section:

h2.section { properties }

You can take the selector even one step further by adding a descendant
selector, as in the following example, which matches all h2 elements with
a class of section that are also descendants of h1 elements:

h1 h2.section { properties }

The following sections provide a quick reference into the various CSS
selector patterns.

Basic Element Selectors
The basic element selectors are used to match specific elements by name
(e.g., p, h1, and so on).

705

Appendix D: CSS 2.1 Selectors Quick Reference

Syntax:

E { properties }

Matches all E elements.

Syntax:

* { properties }

Matches all elements.

Note
The universal selector (*) guarantees only a universal (all element) match if it is the sole criteria in the selec-
tor. If additional conditions are added, they too must be met to match elements. For example, the following
selector will match elements with a class of book only:

*.book { properties }

However, because of the use of the universal selector, all elements with a class of book will be
matched. �

Syntax:

E, F, G { properties }

Matches all E, F, and G elements.

Note
The comma separator can be used to specify a variety of selector patterns for the same selector definition,
not just element name selectors. �

Descendant Selectors
Descendant selectors are used to match elements that are descendants of other, specific elements.

Syntax:

E F { properties }

Matches all F elements that are descendants of E elements.

Child Selectors
Child selectors are used to match elements that are children (direct descendants) of other,
specific elements.

706

Appendix D: CSS 2.1 Selectors Quick Reference

Syntax:

E > F { properties }

Matches all F elements that are children of E elements.

Note
Child selectors are very much like descendant selectors in scope in that they select elements that
are descendants of a specific ancestor element. The distinction, however, is that children must be direct
descendants of the specific ancestor element. That is, there can be no elements between the ancestor
(parent) and descendant (child). �

Adjacent Sibling Selectors
Adjacent sibling selectors are used to match the second of two elements that share the same
parent.

Syntax:

E + F { properties }

Matches all F elements that have the same direct sibling relationship (share the same parent)
as E elements. Note that the E element must immediately precede the F element in the docu-
ment tree.

Class Selectors
Class selectors are used to match elements of a particular class (elements that have a particular
value for their class attribute).

Syntax:

E.c { properties }

Matches all E elements that have a class of c.

Tip
You can also use the attribute selector method to select elements that have the class attribute set to a
specific value or set to any value. See the ‘‘Attribute Selectors’’ section later in this appendix for more
information. �

ID Selectors
ID selectors are used to match elements of a particular ID (elements that have a particular value
for their ID attribute).

707

Appendix D: CSS 2.1 Selectors Quick Reference

Syntax:

E#i { properties }

Matches all E elements that have an ID of i.

Attribute Selectors
Attribute selectors are used to match elements that have a particular value for a particular
attribute. The attribute selector has three different formats.

Syntax:

E[a] { properties }

Matches all E elements that have an attribute named a, no matter what the value.

E[a="v"]

Matches all E elements that have an attribute named a, with a value of v.

E[a∼="v"]

Matches all E elements that have an attribute named a, with a space-separated list of values, one
of which is v.

Tip
This selector method can also be used to match elements with a specific class using the format

E[class∼="c"]
where c is the class value to match.

E[a|="v"]

Matches all E elements that have an attribute named a, with a hyphen-separated list of values, the first of
which is v. �

708

Pseudo-Elements
and Pseudo-Classes
Quick Reference

IN THIS APPENDIX
Pseudo-Elements

Pseudo-Classes

CSS selectors are designed to match HTML elements that are in a
static state. Occasionally, however, you will want to match pieces
of a document that cannot be clearly delimited by HTML entities, or

match elements that are in a particular phase of a dynamic state. For these
purposes, pseudo-elements and pseudo-classes exist.

Pseudo-elements provide the means to match certain parts of a document that
aren’t delimited by standard elements — the first line or first letter of an
element’s content, for example.

Pseudo-classes provide the means to match elements that are in a certain
state — being the first child of a parent element, having the mouse hovering
over the element, and so on.

Both pseudo-elements and pseudo-classes have the same format: a colon fol-
lowed by a keyword that is appended to the end of a selector. For example,
the following selector will select the first line of all h1 elements:

h1:first-line { properties }

The following sections provide a quick reference for pseudo-elements and
pseudo-classes.

Note
The pseudo-elements and pseudo-classes covered in this appendix are
implemented in almost all modern browsers. Exceptions are the before and
after pseudo-elements, which are not yet supported in Internet Explorer (as of
version 7.0), and the lang pseudo-class, which is supported only in Internet
Explorer for the Mac. The World Wide Web Consortium (W3C) has suggested
many more pseudo-constructs for CSS level 3, which, as of this writing,
is still in draft form. Pseudo-constructs are a powerful feature of CSS but
should be tested on your target platform(s) before being implemented on a
large scale. �

709

Appendix E: Pseudo-Elements and Pseudo-Classes Quick Reference

Pseudo-Elements
Syntax:

E:first-line { properties }

Matches the first line of all E elements.

Syntax:

E:first-letter { properties }

Matches the first letter of all E elements.

Syntax:

E:before { properties } E:after { properties }

Matches the space immediately before (:before) and after (:after) all E elements.

Pseudo-Classes
Syntax:

E:first-child { properties }

Matches all E elements that are a first child of their parent element.

Syntax:

E:link { properties } E:visited { properties }

Matches all E elements that represent a link to another resource (:link) that has not been vis-
ited, or a link to another resource that has been previously visited (:visited).

Syntax:

E:active { properties } E:hover { properties } E:focus { properties }

Matches all E elements in an active state (:active) that are being hovered over by the mouse
(:hover), or have the current focus (:focus).

Syntax:

E:lang(c)

Matches all E elements that are in language ‘‘c’’.

710

A
<a>. See anchor tags

<abbr>. See abbreviation tag

abbr (table cell attribute), 114

abbreviation tag (<abbr>), 67–68, 619

above (frame attribute value), 110

absolute links, 90–92

absolute positioning, 506–507

absolute size, 441

absolute size keywords (font size value metric),

441

accented special characters, 237–239, 670–672

accept attribute, 164

accept-charset, 164

accesskey attribute, 94–95, 174–175

<acronym>, 68, 620

ACSS (Aural CSS), 573

action attribute, 162, 163, 174

:active, 413, 551, 600

active (link status mode), 96–97

ActiveBorder (system color keyword), 584

ActiveCaption (system color keyword), 584

ActiveX controls, 223, 443

acute accent, 243, 256, 676

addCoupon, 179

<address>, 337, 338, 340, 620–621

adjacent sibling selectors, 280, 407, 410–412,

591, 707

Adobe Dreamweaver, 314–315, 366, 590–591

Adobe Fireworks, 196, 200, 215, 318

Adobe Flash, 227, 229, 230, 299, 318–319,

352

Adobe Freehand, 318

Adobe HomeSite, 311–312

Adobe Illustrator, 318

Adobe Photoshop, 11, 196, 197, 198, 318

Adobe’s TechNote site, 220

:after, 417–418, 419, 527, 530–531, 709

align attribute

images and, 202–203

inline frame tag, 156

table cell, 114

table row tag, 112

alignment

captions, 468–470

horizontal text, 445–448

images, 201–204

tables, 103–107

text, 445–450

valign attribute

table cell, 114

table row tag, 112

vertical text, 448–450

vertical-align property, 448–450, 451, 461,

695

all (CSS media type), 554

all (rules attribute value), 111

Alliance for Technology Access website, 679

almost equal to, 242, 675

alpha (Greek letter), 672, 673

711

Index

alphabets, in Unicode, 250–254

alt attribute, 37, 200, 204, 205, 211, 356

Altova, 347

always (page-break-before/after property value),

561

American Standard Code for Information

Interchange (ASCII), 231, 235, 323,

324, 381

ampersand (&), 32, 232, 233, 255, 667

ancestors/descendants, 410

anchor pseudo-classes, 551–552

:active, 413, 551, 600

:hover, 413, 551

:link, 413, 451

:visited, 413, 551

anchor styles, 413–414

anchor tags (<a>), 35–37, 96, 618–619

bookmarks and, 96

creating, 96

pseudo-classes for, 413–414

reference, 618–619

angle (mathematical symbol entity), 242, 675

angle brackets, 7, 13, 14, 31, 32, 137. See also

brackets

left-pointing, 243, 675

right-pointing, 243, 675

angles (aural metric), 429

animated images, 199–200, 214–216

event triggers and, 265

GIF and, 215

animation/video formats, 216–219

Apache rewrite module, 355

APIs (application program interfaces), 273, 343

APL overbar, 243, 676

apostrophe special characters, 669

appendChild(), 277

Apple Safari, 4, 368, 573

application program interfaces (APIs), 273, 343

approximately equal to, 242, 675

AppWorkSpace (system color keyword), 584

Arabic numbers, 72, 73

<area>, 621

Armenian value, 75, 250, 474, 684

arrow special characters, 236, 669

ascension (font characteristic), 438

ASCII (American Standard Code for Information

Interchange), 231, 235, 323, 324, 381

ASP, 262

ASP.NET, 262

asterisk operator, 242, 674

ASX markup language, 219, 223

asymptotic to, 242, 675

@ sign, entity equivalent and, 380

@import rule, 434, 556

@media rule, 554, 555, 569

@page rule, 557–560, 564, 569

attribute selectors, 707, 708

attributes. See also event attributes; tag

attributes; specific attributes

HTML5, 300–305

JavaScript DOM property binding, 276

XML, 333–334

aural (CSS media type), 554

Aural CSS (ACSS), 573

aural style sheets

Alliance for Technology Access website and,

679

angles and, 423, 429–430

frequencies and, 423, 429–430

time values and, 423, 429–430

author styles, 433–434

auto (overflow property value), 516

712

Index

auto (page-break-before/after property value),

561

auto value (cursor property), 582

auto-completion

tag, 17

text, 590

autogenerated text, 460. See also generated

content

automatic numbering (for elements), 532–536

automation, form, 289–295, 382–387

auto-numbering system, chapter/section,

533–536

avoid (page-break-before/after property value),

561

axis (table cell attribute), 114

azimuth, 429, 430

B
. See bold tag

Babel Fish, 249

Background (system color keyword), 584

background colors

CSS and, 492–495

documents, 46–47

tables, 119–120

background images, 47–48

CSS and, 496–502

positioning, 501

background properties (CSS 2.1), 680,

682–684

background, 192, 502, 684

background-attachment, 498–500, 683

background-color, 47, 119–120, 191–193,

493–494, 683

background-image, 47, 496–498, 682

background-position, 501, 683

background-repeat, 498–500, 682

shortcut, 502

backward difference (nabla), 241, 674

<base> tag, 43, 622–623

<basefont> tag, 62, 303

baseline (font characteristic), 438

baseline (vertical-align property value), 448

baseline alignment, 112

Basic Latin, 249–250

<bdo>, 623

BECSS (Behavioral Extensions to CSS), 573

:before, 417–418, 419, 527, 530–531, 709

Beginning XML, Third Edition (WROX), 329

Behavioral Extensions to CSS (BECSS), 573

below (frame attribute value), 110

Benefits of Membership caption, 114–117

beta (Greek letter), 672, 673

bgcolor attributes, 46, 111, 119, 185, 186, 191,

222, 304

<bgsound> tag, 228–229

<big>, 29, 30, 623–624

bigText.style.fontSize, 540

BitStream, 443

−blank value, 92, 153

Blast Radius, 347

block elements, 21–31

block properties (CSS 2.1), 681, 692–695

<blockquote> tags, 24, 25, 57–58, 624. See

also <q>

blocks and navigational menus (table

formatting), 139–141

<body> tags, 19–20, 624–625

bold tag (), 65–66, 621–622. See also

bookmarks, anchor tags for, 96

border (frame attribute value), 110

713

Index

border attribute

image tag, 206

<table> tag, 9, 108, 110, 379, 409, 462

border styles, 484–485

borders

collapsing, 464–466, 522, 523

colors, 485–486

conflicts, 484

element, 483–487

on empty cells, 465–467

image, 206–208

multiple color, 576–577

table, 108–110

borders properties (CSS 2.1), 461–462, 681,

698–699

border, 206, 418, 486–487, 699

border-bottom, 192, 207, 418

border-bottom-color, 192, 207, 419, 485,

698

border-bottom-style, 207, 419, 484, 699

border-bottom-width, 207, 419, 483, 699

border-collapse, 418, 464–466, 487, 701

border-color, 192, 207, 418, 485, 698

border-left, 192, 207, 418

border-left-color, 192, 207, 419, 485, 698

border-left-style, 207, 419, 484, 699

border-left-width, 207, 419, 483, 699

border-right, 192, 206, 418

border-right-color, 192, 207, 419, 485, 698

border-right-style, 207, 419, 484, 699

border-right-width, 207, 419, 483, 699

border-spacing, 418, 461, 462, 463, 487,

701–702

border-style, 207, 419, 484, 699

border-top, 192, 206, 418

border-top-color, 192, 207, 418, 485, 698

border-top-style, 207, 419, 484, 699

border-top-width, 207, 419, 483, 699

border-width, 207, 419, 483, 699

outline, 700–701

outline-color, 700

outline-style, 700

outline-width, 700

shortcuts, 486–487

shorthand expressions and, 418–420

border-side, 207, 420

border-<side>-color property, 574

bottom (CSS property), 508, 697

bottom (vertical-align property value), 448

box (frame attribute value), 110

box formatting model (CSS), 479–490. See also

borders; margins; padding

borders and, 483–487

margins and, 487–489

padding and, 482–483

page box formatting model v., 556–558

box model/vertical module (CSS3), 572

boxes, rounded. See rounded corners

 (line break tag), 51–52, 625–626

braces { } , 406, 421, 589, 591

brackets [], 14, 169, 409. See also angle

brackets

Braille (CSS media type), 554

brass ring. See rounded corners

broken bar/broken vertical bar, 243, 255, 676

browser detection (browser sniffing), 288–289

browsers. See also Firefox; Internet Explorer

Check Browser Compatibility feature, 315,

316

cross-browser compatibility issues (DHTML),

288–289

CSS3 properties and, 573–574

714

Index

Gecko, 539, 561

as graphical FTP client, 326

hiding scripts from, 269–270

HTML and, 4

JavaScript event handlers for, 287

Konqueror, 368

nongraphical, 204–205

Opera, 4, 368, 560, 561, 563

@page rule and, 557

Safari, 4, 368, 573

bulleted lists. See unordered lists

<button>, 626–627

button field, 171, 172, 179

ButtonFace, 584

ButtonHighlight, 584

buttons

custom, 171–172

expanding, 597–600

radio, 165–166

Reset, 174

Submit, 172, 174

ButtonShadow, 584

ButtonText, 584

C
C++, 343

calling external scripts, 264

cap (intersection), 242, 675

capital A special characters, 256

capital C, cedilla, 257

capital E special characters, 257

capital Eth, Icelandic, 257

capital I special characters, 257

capital N, tilde, 257

capital O special characters, 257

capital THORN, Icelandic, 257

capital U special characters, 257

capitalization, 457–458. See also text-transform

property

caption (user interface font keyword), 587

captions (<caption>), 114–117, 627

aligning/positioning, 468–470

reference for, 627

caption-side property, 468–469, 702

CaptionText, 584

cascade, 433–435

cascade/inheritance/value assignment module

(CSS3), 572

Cascading Style Sheets. See CSS

cascading styles, 402–404

CDATA sections, 14, 334, 341, 342

cedilla, 244, 256, 676

cell padding, 107–108

cell spacing, 107–108

cellpadding attribute, 107, 461

cells. See table cells

cellspacing attribute, 107, 461, 463

cent symbol, 235, 255, 668

center justification, 447

centimeters (CSS property values measure),

425

CGI (Common Gateway Interface), 262

CGI Resource Index, 183

changing document’s nodes, 278–280

chapter/section auto-numbering system,

533–536
char

table cell attribute, 114

table row tag attribute, 112

character encodings, 231–232. See also

internationalization; special characters

character entities. See special characters

character formatting, 61–70

715

Index

charoff, 112, 114

charset, 98

chdirscroll(), 393

check boxes

DHTML and, 289–295

forms and, 166

Check Browser Compatibility feature, 315, 316

checked attribute, 166

chi (Greek letter), 673

child selectors, 410–412, 706–707

childNodes, 276, 280

children/parents, 411

circle polygons, 209, 210

circled plus = direct sum, 242, 675

circled times = vector product, 242, 675

<cite>, 627

CJK Compatibility, 253

CJK Compatibility Forms, 254

CJK Compatibility Ideographs, 254

CJK Letters and Months, enclosed, 253

CJK Radicals Supplement, 253

CJK Strokes, 253

CJK Symbols and Punctuation, 253

CJK Unified Ideographs, 253

CJK Unified Ideographs Extension A, 253

cjk-ideographic, 75, 474

Clark, James, 347

class attribute (classes), 12–13, 16, 68, 69, 413,

414, 415, 665, 707

IDs v., 12

style attribute v., 69

class selectors, 415, 561, 705, 707

classid attribute, 220, 224

clear property, 453–454, 512, 698

clickable regions, 209–211

client-side image maps, 208

client-side scripting. See scripts

clip, 693

cloneNode(), 277

closing item tags (), 81

closing tags

column tags and, 126

form tags and, 161

image tag and, 200

script hiding tags and, 269

XHTML and, 617

<code>, 628

code pages, 249

codebase attribute, 220, 224

CoffeeCup FTP client, 326

<col>, 125–126, 628–629

ColdFusion, 313. See also NetObjects Fusion

<colgroup>, 125–126, 629

collapsible menus, 292–295

collapsing borders, 464–466, 522, 523

color attributes, 10, 11, 61, 63, 186, 192, 414

color codes, 665

color keywords, 486, 492, 584–586

color property, 57, 64, 191–193, 491–492,

688

color/gamma/color profiles module (CSS3), 572

colors, 185–193. See also background colors

basics, 185–186

border, 485–486

CSS property values and, 428–429

8-bit palette, 194

element, 491–495

evolution of (on Web), 187–191

extended named color palette, 189–191

foreground, 491–492

hexadecimal format, 10–11, 186, 187, 188,

189, 190, 191, 486

716

Index

link status, 96–98

RGB decimal format, 10–11, 186, 486

16 colors palette, 185, 188

specifying, 191–193

216 colors palette, 187, 188

user interface, 583–586

values, 10–11

Web-safe palette of, 187–188

cols (rules attribute value), 111

colspan (table cell attribute), 114, 120, 379

columns. See table columns

columns module (CSS3), 573

comments, 13–14, 38

nesting, 13

table formatting and, 133

uses for, 38

XML and, 334

Common Gateway Interface. See CGI

Compact HTML, 350

compression, of images, 193–194

CompuServe, 194

conflict resolution, CSS, 435

contact element, 344

contains as member (mathematical symbol

entity), 241, 674

content property, 525–527, 685

counters and, 76–77

coords attribute, 211

copyright issues, images and, 196–197

copyright symbol, 234–235, 255, 668

Core DOM, 281–282

corners, rounded, 575–577, 605–608

corporate website, tables and, 131–132

counter object, 532

counter-increment, 76, 532–533, 686

counter-reset, 76, 532, 533, 686

counters, 76–77, 532–536

CPAN, 347

createElement(), 277

createTextNode(), 277

crop marks, 560

cross marks, 560

cross-browser compatibility issues (DHTML),

288–289

crosshair value (cursor property), 582

CSS (Cascading Style Sheets). See also borders

properties; style definitions

Aural, 573

background colors and, 492–495

background images and, 496–502

background properties. See background

properties

basics, 397–404

box formatting model, 479–490, 556–558

cascade and, 433–435

conflict resolution, 435

content property, 525–527

DHTML with, 539–552

editing, Firefox add-ons for, 592–593

element positioning, 503–523

fonts and, 437–444

future of. See CSS3

generated content. See generated content

/HTML rift, 62, 142, 305

inheritance and, 431–433

layouts, 127, 503–523

levels of, 400, 571

list properties. See list properties

lists, 472–478

manipulation, 545–552

media types, 553–570

metrics, 423–430

717

Index

CSS (Cascading Style Sheets). See also borders

properties; style definitions (continued)

positioning properties. See positioning

properties

precedence rules, 403–404

properties

accessed with JavaScript, 539–545

list, 679–704

table attributes and, 460–467

property values, 421–430

pseudo-elements, 527–531

rounded corners, 575–577, 605–608

selectors. See selectors

specificity and, 435–436

table layout v. CSS layout, 127

testing, 589–591

text formatting, 445–470

text hiding/showing and, 545–547

tips/tricks, 595–615

validating, 591–592

validation tool (W3C), 367

CSS Juice, 607

CSS level 3. See CSS3

CSS Validator, 592

CSS1, 400

CSS2, 400

CSS3 (CSS level 3), 400, 571–577

modules, 572–573

properties, usage of, 573–574

pseudo constructs for, 709

rounded corners and, 575–577

selectors, 574–575

cubed, 243, 676

cup (union), 242, 675

currency special characters, 235, 668

currency symbol, general, 235, 255

currentStyle, 541, 542, 543

cursive fonts, 438, 439

cursor property, 581–583, 704

custom list numbering, 536

CuteFTP, 326

D
dagger, 244, 677

<dd> (definition description tag), 24, 25, 71,

629–630

decimal color values, 10–11, 186, 486

decimal value, 75, 473, 684

decimal-leading-zero, 75, 473, 684

default path, 43–44

default value (cursor property), 582

definition description tag. See <dd>

definition lists (<dl>), 24, 71, 81–83,

631–632

degree sign, 243, 256, 676

degrees (aural metric), 429

. See delete tag

delete tag (), 31, 68, 630

delta (Greek letter), 672, 673

deprecated attributes (HTML5), 304–305

deprecated elements (HTML5), 303–304

descendant selectors, 407, 410–412, 705, 706,

707

descendants/ancestors, 410

descension (font characteristic), 438

descriptors, 88

<dfn>, 630–631

DHTML (dynamic HTML), 271–295

checkboxes and, 289–295

collapsible menus and, 292–295

cross-browser compatibility issues, 288–289

with CSS, 539–552

718

Index

DOM and, 272–280

examples, 289–295

mechanics of, 272

need for, 271–272

rollovers and, 291–292

diaeresis, 243, 255, 258, 676

diameter (empty set = null set = diameter), 241,

674

dimensions, image, 193, 379

dir attribute, 15, 18, 665

direct sum = circled plus, 242, 675

direction property, 692

disabled attribute, 175, 176, 177

discretionary hyphen, 243, 676

display property, 293, 472, 523, 545, 546, 548,

549, 603, 696

dithering, 194

<div>, </div>. See division tags

division sign, 241, 258, 674

division tags (<div>, </div>), 27–28, 29,

52–56, 70, 631

code example, 53–56

paragraph tags and, 53

rounded corners and, 605–606

section elements (HTML5) v., 297–298

 tag v., 68

<dl>. See definition lists

<!DOCTYPE> tag, 17–18

document object, 283–284

Document Object Model. See DOM

document title, 41, 42

Document Type Definitions. See DTDs

documents. See HTML documents

document’s nodes, changing, 278–280

dollar symbol, 235

DOM (JavaScript Document Object Model),

280–286

Core, 281–282

Internet Explorer and, 273, 539

method bindings, 277–278

property bindings, 276–277

DOM (WC3 Document Object Model),

272–280

basis of, 273–275

document (example), 273–276

history of, 273

online information, 272

doscroll(), 393

dot operator, 242, 675

double dagger, 245, 677

double low-9 quotation mark, 244, 677

double quote mark, 233, 667

double-side printing, 564

down arrow, 236, 669

down arrow with corner leftwards, 236, 669

down double arrow, 669

downwards double arrow, 236

Dreamweaver (Adobe), 314–315, 366,

590–591

drop shadow effect, 133, 134, 271, 459, 539,

576, 609

<dt>, 71, 632

DTDs (Document Type Definitions), 17–18

code validation and, 365–366

frameset, 145, 152, 155

XML and, 332, 337–342

attributes in, 341–342

elements in, 338–340

dynamic HTML. See DHTML

dynamic outlines. See outlines

719

Index

E
E ∼ F, 575

E:checked, 575

ECMAScript, 280–282

EditCSS, 592

editing

CSS, Firefox add-ons and, 592–593

graphics, 317–318

GUI HTML, 125

HTML-specific editors, 311–312

image editors, 216

Jase, 363

raster-based editors, 318

smart text editors, 310–311

text-oriented editors, 309–312

WYSIWYG HTML editors, 312–317

XML, 346–347

editorial insertions/deletions. See delete tag;

insert tag

E:empty, 575

E:first-of-type, 575

E[foo =‘‘bar’’], 575

E[foo$=‘‘bar’’], 575

E[foo*=‘‘bar’’], 575

EGA (Enhanced Graphics Adapter), 185

8-bit palette, 194

E:last-child, 575

E:last-of-type, 575

electronic robots (spiders), 87

element of (mathematical symbol entity), 241,

674

element positioning (CSS), 503–523

absolute positioning model, 506–507

fixed positioning model, 507–508

relative positioning model, 504–505

specifying, 508–511

stacking elements in layers, 517–522

static positioning model, 503–504

element selectors, 407, 705–706

elements. See also pseudo-elements

automatic numbering, 532–536

borders, 483–487

colors, 491–495

deprecated (HTML5), 303–304

floating, to left/right, 511–514

flowing, 608–611

head, 41–48

HTML (reference), 617–665

in HTML documents, 17–40

HTML5, 300–305

listing of, 618–663

margins, 487–489

maximum/minimum sizes for, 515

organizational, 32–35

overflow property and, 501, 515–517, 694

padding, 482–483

stacking, 517–522

visibility property and, 522–523, 696

XHTML Basic, 352–353

XML, 332–333, 338–340

. See emphasis tags

Em dash, 233–234, 668

em metric, 426, 427

Em space, 233–234, 668

Emacs, 310, 346, 347

e-mail addresses, protection of, 379–381

<embed> tag, 220, 222, 223, 228, 229, 230

embedding fonts, 442–444

embedding multimedia, 219–228

Windows Media Player, 223–226

YouTube videos, 226–228

embossed (CSS media type), 554

720

Index

emphasis tags (), 31, 62–64, 66,

632–633

italic tags v., 66

list of, 64

reference for, 632–633

empty cells, 113, 682, 702

borders on, 465–467

nonbreaking space and, 113

empty set, 241, 674

empty-cells property, 113, 465–467, 702

En dash, 233–234, 668

En space, 233–234, 668

encoding e-mail addresses, 380–381

enctype, 164

English pound, 235, 255, 668

Enhanced Graphics Adapter (EGA), 185

E:not(s), 575

E:nth-child(n), 575

E:nth-last-child(n), 575

E:nth-last-of-type(n), 575

E:nth-of-type(n), 575

entities. See also special characters

special characters as, 232–233

XML, 335, 342

entity equivalent, @ sign and, 380

E:only-child, 575

E:only-of-type, 575

epsilon (Greek letter), 672, 673

e-resize (cursor property), 582

Ericsson Mobility World Developer Program,

357

E:root, 575

essential special characters, 233, 667

eta (Greek letter), 672, 673

E:target, 575

euro, 235, 668

event attributes, 180, 663–664

event handlers, 286–287

events

forms and, 179–182

triggering scripts with, 264–269

evolution of colors (on Web), 187–191

expandable title bars, 374–376

expanding buttons, 597–600

expat (XML parser), 347

expires meta tag, 44

extended named color palette, 189–191

Extensible Markup Language. See XML

Extensible Stylesheet Language Transformations.

See XSLT

external scripts, calling, 264

F
fantasy fonts, 439

feminine ordinal indicator, 243, 256, 676

field labels, 164

<fieldset> tag, 178, 633

fieldsets, 177–179

file fields, 172–173

File Transfer Protocol. See FTP

FileZilla, 325

findNode(), 278

Firebug, 316–317, 593

Firefox

add-ons

for CSS editing, 592–593

WYSIWYG HTML editing and, 316–317

getStyleVal() and, 544

multiple-color borders and, 576

rounded corners and, 576

FireFTP, 326

721

Index

Fireworks (Adobe), 196, 200, 215, 318

:first, 564

firstChild, 276

:first-child, 414

:first-letter, 416–417, 527, 528–530

:first-line, 415–416, 527, 528

fixed positioning, 507–508

Flash (Adobe), 227, 229, 230, 299, 318–319,

352

float property, 451–454, 511–514, 697

floating. See also flowing

elements (to left/right), 511–514

images, 451–453, 511–514

page layouts, 132–138

flowing

elements, 608–611

text, 611–615

:focus, 413

font property (CSS 2.1), 64, 690

font size value metrics, 441

 tags, 30, 61–62

font-family, 64, 688

fonts (CSS), 437–444. See also specific fonts

characteristics, 437–438

cursive, 438, 439

defined, 437

embedding, 442–444

fantasy, 439

font family types, 438–440

glyphs and, 437–438

monospace, 58, 61, 66, 455, 649, 662

OpenType standard, 443

rights for use, 443

Sans-serif, 438, 439, 440

Serif, 438, 439, 440

sizing, 440–441

styling, 441–442

TrueDoc standard, 443

user interface, 587

fonts module (CSS3), 572

font-size, 64, 440, 688–689

font-size-adjust, 440, 441

font-stretch, 441–442

font-style, 64, 69, 441–442, 689

font/text properties (CSS 2.1), 64, 680–681,

686–691

font-variant, 64, 441–442, 689

font-weight, 64, 69, 441–442, 689–690

footers (table footers), 117–119

for all, 241, 674

foreground colors, 491–492

form data verification, event triggers and, 265

form handlers, 159, 182–183

form input validation, 384–387

form objects, 284, 382–384

<form> tag, 162–164

attributes, 163–164

reference, 633–634

formatting

box formatting model (CSS) and, 479–490,

556–558

characters, 61–70

image formats, 192–195

inline formatting elements. See inline

formatting elements

paragraphs. See paragraph tags

with tables, 127–142

text (CSS), 445–470

formmail.cgi, 182, 183

forms (HTML forms), 34–35, 159–183

automation, 289–295, 382–387

basic (code example), 159–162

722

Index

buttons. See buttons

check boxes, 166

events with, 179–182

field labels, 164

fieldsets, 177–179

file fields, 172–173

hidden fields, 170–171

images on, 172

inserting, 162–164

keyboard shortcuts and, 174–175

large text input, 169–170

legends, 177–179

list boxes, 167–169

password input boxes, 165

preventing changes in, 175–177

radio buttons, 165–166

Reset button, 174

script services, 183

Submit button, 172, 174

tab order and, 174–175

table layout and, 127–131

text input boxes, 164–165

ForumNokia, 357

Fotolia, 197

fraction one-half, 244, 256, 676

fraction one-quarter, 244, 256, 676

fraction three-quarters, 244, 256,

676

frame attribute values, 110

frame attributes, 110, 145, 148

frame borders, 150, 151

frame tag (<frame>), 148–150

frame tag attributes, 148–149

frameborder attribute, 148, 149,

156

frame−name value, 92, 153

frames, 143–158

inline, 155–158

overview, 143–144

resizing, 150–151

targeting, 151–154

frameset DTDs, 145, 152, 155

frameset tag (<frameset>), 146–147

framesets, 144–148

creating, 144–146

nested, 154–155

free-form polygons, 209, 210

Freehand (Adobe), 318

frequencies (aural metric), 429

FTP (File Transfer Protocol), 14, 321–327

FTP clients, 322–326

FTP commands, 324–325

FTP Voyager, 326

fully justified text, 447

FuturePlayer, 218

G
gamma (Greek letter), 672, 673

gamma/color profiles/color module (CSS3),

572

Gecko browsers, 539, 561

general currency symbol, 235, 255

generated content (CSS 2.1), 680, 685–686

content property, 525–527, 685

counter-increment, 686

counter-reset, 686

pseudo-elements and, 525–537

quotes, 531–532, 686

generated content/markers module (CSS3),

573

Georgian comma, 244, 676

Georgian value, 75, 251, 252

723

Index

GET (HTTP GET), 163, 173

getAttribute(), 277

getElementById(), 277, 280, 287–288

getElementByTagName(), 277

getPropertyValue(), 542

getScrollXY(), 393

getStyleVal(), 543, 544, 545

Getty Images, 197

GIFs (Graphics Interchange Format), 37,

194–195

animated images and, 215

compression and, 194–195

interlaced, 197–198

The GIMP, 318

global attributes (HTML5), 303

glyphs, 437–438

Gnome, 326

grads (aural metric), 429

graphical FTP clients, 323–326

graphics editors, 317–318

Graphics Interchange Format. See GIFs

graphics/text, in nonstandard format (table

formatting), 134–139

GrayText, 584

greater than (>), 7, 233, 255, 667

greater than or equal to, 242, 675

Greek middle dot, 244, 676

Greek special characters, 239–241, 672–674

grid.jpg, 47, 48

grouping columns, 125–126

groups (rules attribute value), 111

GUI HTML editors. See HTML editors

guidelines/standards, W3C and, 7

guillemet

left-pointing, 243, 256, 676

right-pointing, 244, 256, 676

H
<h1> through <h6>. See headings

handheld (CSS media type), 554

Handset Detection, 355

hanging indents, 595–597

hasChildNodes(), 277

head elements, 41–48

<head> tags, 18–19, 635

headers (HTTP 1.1), 43

headers (table cell attribute), 114

headers (table headers), 117–119

headings (<h1> through <h6>), 22–24,

634–635

Hebrew value, 75, 250, 474

height attribute

image tags and, 205, 206

inline frame tag, 156

height property (CSS), 514–515, 694

help value (cursor property), 582

hexadecimal color format, 10–11, 186, 187,

188, 189, 190, 191, 486

hidden (overflow property value), 516

hidden fields, 170–171

hiding scripts, from older browsers, 269–270

hiding/showing text, 545–547

hierarchy, HTML document, 410–412

Highlight (system color keyword), 584

highlighting, 4–6

HighlightText, 584

hiragana, 75, 253, 474

hiragana-iroha, 75, 474

history object, 285

HomeSite (Adobe), 311–312

horizontal collapsible menus, 292–295

horizontal rule tag (<hr>), 56–57, 636

horizontal text alignment, 445–448

724

Index

:hover, 413, 551

hover (CSS anchor pseudo-class), 291

hover (link status mode), 96–97

<hr>. See horizontal rule tag

href (hypertext reference attribute), 36,

37

hreflang, 98

hsides (frame attribute value), 110

HTML (Hypertext Markup Language). See also

DHTML; HTML5; mobile HTML

angle brackets and, 7

browsers and, 4

/CSS rift, 62, 142, 305

defined, 4

elements (reference), 617–665

future of. See HTML5

Hypertext and, 4

markup languages and, 6–8

purpose of, 6

send only, 159

styles and, 398–400

tips/tricks, 371–393

validation tool (W3C), 366

values/units, 9–16

Web documents and, 4

HTML documents (Web documents)

background color, 46–47

background images, 47–48

default path, 43–44

elements, 17–40

hierarchy, 410–412

HTML and, 4

organizational elements of, 32–35

printing setup for, 556–564

profiles, 45–46

publishing, 321–327

redirecting, 44

refreshing, 43–44

screen media (online), 565–568

script sections, 45

scripts added to, 263–264. See also scripts

structure/sections, 18–20

testing, 368–369

HTML editors

HTML-specific editors, 311–312

spanning columns/rows and, 125

WYSIWYG, 312–317

HTML forms. See forms

HTML lists. See lists

HTML tables. See tables

<html> tag, 18, 636–637

HTML Tidy tool, 362–365

HTML5, 297–305

deprecated attributes, 304–305

deprecated elements, 303–304

elements/attributes, 300–305

multimedia and, 298–300

publishing/layout features in, 297–298

section elements, 297–298

W3C and, 297

XHTML and, 301

HTMLTrim, 362

HTTP (Hypertext Transfer Protocol), 14

HTTP 1.1 headers, 43

HTTP GET, 163, 173

HTTP POST, 163, 173, 290, 367, 385

HTTP-EQUIV parameter, 42, 44, 232, 263,

644

Hypertext, 4

Hypertext Markup Language. See HTML

hypertext reference attribute. See href

Hypertext Transfer Protocol. See HTTP

725

Index

I
<i>. See italic tag

icon (user interface font keyword), 587

ID selectors, 707–708

identical to, 242, 675

identifiers, for tags, 12–13

IDs (id attribute), 12, 665

classes v., 12

<form> tag, 163, 164

<iframe> tag, 155–158, 302

Illustrator (Adobe), 318

image compression, 193–194

image editors, 216

image formats, 192–195

image maps, 37, 208–212

image tags (), 37, 637–638

border attribute, 206

closing tag and, 200

width attribute, 205

images, 37

alignment, 201–204

animated, 199–200, 214–216, 265

background, 47–48

CSS and, 496–502

positioning, 501

borders around, 206–208

compression of, 193–194

copyright issues and, 196–197

dimensions, 193, 379

floating, 451–453, 511–514

on forms, 172

inserting, 200–201

licensed (online), 197

as list markers, 476–477

preloading, 371–373

repeating, 498–501

scrolling, 498–501

sizing, 205–206

transparency and, 194, 198–199

zooming, 548–549

. See image tags

!important rule, 403, 404, 434, 435

@import rule, 434, 556

InactiveBorder, 584

InactiveCaption, 584

InactiveCaptionText, 584

inches (CSS property values measure), 425

indenting text, 450–451

index document, 88

infinity (mathematical symbol entity), 242, 674

InfoBackground, 584

InfoText, 584

inherit (page-break-before/after property value),

561

inherit keyword, 424

inheritance, 431–433

inheritance/value assignment/cascade module

(CSS3), 572

initscroll(), 392–393

inline formatting elements, 28–31

<big>, 29, 30, 623–624

bold tag, 65–66, 621–622

emphasis tags, 31, 62–64, 66, 632–633

italic tag, 65–66, 637

<small>, 29, 30, 652–653

 tag and, 68–69

, 29, 31, 653–654

teletype tag, 29, 30, 66, 554, 662

inline frame tag attributes, 156–157

inline frames, 155–158

<input>, 638–639

<ins>. See insert tag

726

Index

insert tag (<ins>), 31, 68, 639

insertBefore(), 277

inserting

forms, 162–164

images, 200–201

instructions. See markup instructions

integral, 242, 675

interlaced GIFs, 197–198

internationalization, 247–248, 623. See also

localization

attributes, 665

character encoding and, 231–232

localization v., 247–248

Internet Explorer

access keys and, 95

:after and, 709

@page rule and, 557

:before and, 709

blurs and, 539

border-spacing property and, 464

caption-side property and, 469

cross-browser compatibility issues and, 288

document title in, 41, 42

DOMs and, 273, 539

drop shadows and, 539

empty-cells property and, 466

expanding buttons and, 600

file field in, 173

frameborder setting and, 149

getStyleVal() and, 544

horizontal rule in, 57

HTML and, 4

image alignment and, 201, 202

:lang and, 709

link titles and, 93, 94

OpenType and, 443

page-break properties and, 560, 561

positioning support and, 508

<q> and, 650

RSS document and, 345, 346

testing HTML with, 368

user styles and, 434

Windows Media Player and, 223

Internet service providers (ISPs), 262, 320

intersection, 242, 675

inverted exclamation mark, 243, 255, 676

inverted question mark, 244, 256, 676

iota (Greek letter), 672, 673

ISO-8859-1, 42, 254–258, 259, 260

ISPs (Internet service providers), 262, 320

iStockphoto, 197

italic tag (<i>), 65–66, 637. See also emphasis

tags

J
James Clark’s XML parser, 347

Japanese yen, 235, 255, 668

Jase, 363

Java, 262, 343, 344, 362

JavaScript, 38, 39. See also scripts

CSS properties accessed with, 539–545

ECMAScript, 280–282

event handlers, 286–287

form automation with, 382–387

form input validation with, 384–387

rollovers and, 291–292

scripting and, 181, 261

scrollbar control and, 387–393

targeting frames with, 151

text hiding/showing and, 545–547

window.open(), 93, 281

JavaScript Bible (Wiley, 2009), 295, 387

727

Index

JavaScript DOM, 280–286

method bindings, 277–278

property bindings, 276–277

Jigsaw tool, 591–592, 593

Joint Photographic Experts Group. See JPEGs

JPEGs (Joint Photographic Experts Group), 37,

195

compression and, 195

progressive, 197–198

JScript, 261

K
K Desktop Environment, 326

kappa (Greek letter), 672, 673

katakana, 75, 253, 474

katakana-iroha, 75, 474

<kbd>, 640

keyboard shortcuts

for forms, 174–175

for links, 94–95

keywords

absolute size, 441

color, 486, 492, 584–586

inherit, 424

property values, 424

relative size, 441

user interface font, 587

Konqueror, 368

L
label attribute (<option> tag), 167

<label> tag, 164, 640–641

lambda (Greek letter), 672, 673

:lang, 414, 417, 709

lang attribute, 15, 18, 665

language codes, 15

large text input, 169–170

lastChild, 276

Latin capital letter S with caron, 244, 677

Latin capital letter Y with diaeresis, 244, 677

Latin capital ligature OE, 244, 676

Latin encodings, 249–254

Latin Extended Additional, 260

Latin Extended-A, 259

Latin Extended-B, 260

Latin letters (accented special characters),

237–239, 670–672

Latin small letter S with caron, 244, 677

Latin small ligature oe, 244, 676

Latin-1 Supplement, 254–255

layout features, HTML5 and, 297–298

layouts (CSS), 503–523

:left, 564

left (CSS property), 508, 697

left (page-break-before/after property value),

561

left arrow, 236, 669

left ceiling, 242, 675

left double arrow, 669

left floor, 243, 675

left justification, 447

left right arrow, 236, 669

left right double arrow, 236, 669

left/opening double-quote, 236, 669

left/opening single-quote, 236, 669

left-pointing angle bracket, 243, 675

left-pointing double angle quotation mark (left

pointing guillemet), 243, 256, 676

left-to-right mark, 244, 677

leftwards double arrow, 236

<legend> tag, 178, 179, 641

728

Index

legends, 177–179

length (vertical-align property value), 448

less than (<), 7, 233, 255, 667

less than or equal to, 242, 675

letter-spacing property, 455–457, 690

lhs (frame attribute value), 110

 (closing item tags), 81

 (list item tag), 24, 72, 641–642

licensed images, 197

line box model module (CSS3), 572

line break tag (
), 51–52, 625–626

line spacing, 442

line-height, 442, 695

:link, 413, 551

Link (link status mode), 96–97

<link> tag, 99, 642

links, 35–37, 87–100

absolute, 90–92

colors, 96–98

components, 87–89

destination details, 98–99

keyboard shortcuts, 94–95

relative, 90–92

status modes, 96–97

tab order, 95

target attribute, 92–93

targeting links to frames, 151–154

titles, 93–94, 665

URIs and, 14–15

to Web pages, 89–90

Linux graphical FTP clients, 326

list boxes, 167–169

list item tag. See

list markers

images as, 476–477

positioning of, 475–476

list numbering, custom, 536

list properties (CSS 2.1), 680, 684–685

list-style, 75, 473, 476, 685

list-style-image, 79–80, 476–477, 685

list-style-position, 75–76, 78, 475–476,

684

list-style-type, 73–75, 78, 473–475, 684

lists (HTML lists), 24–26, 71–85

CSS and, 472–478

definition, 24, 71, 81–83, 631–632

display format, 72

display options, 72

nested, 83–84

ordered (numbered) lists, 24, 25, 26, 72–77,

471–472, 646

overview of, 471–472

unordered (bulleted), 24, 77–81, 471–472

localization, 247–260

internationalization v., 247–248

software, 249

location object, 284–285

logical and, 242, 675

logical or, 242, 675

longdesc attribute, 148, 149, 156

lower-greek, 75, 473, 684

lower-latin, 75, 473, 684

lower-roman, 75, 473, 684

LZW compression, 194

M
macron, 243, 256, 676

manipulating

CSS, 545–552

form objects, 382–384

map, United States, 208, 212

<map> tags, 208, 211, 212, 643

729

Index

margin properties, 559–560

margin, 487–488, 692

margin-bottom, 487–488, 692

margin-left, 487–488, 595, 597, 692

margin-right, 487–488, 692

marginheight attribute, 148, 149, 156

margins (element margins), 487–489

margin-top, 692

marginwidth attribute, 148, 149, 157

markers. See list markers

markers/generated content module (CSS3),

573

marks property, 560

markup instructions

highlighting and, 5–6

requirements for, 6–7

markup languages, 6–8. See also XML

ASX, 219, 223

defined, 7

HTML and, 6–8

WML, 350, 351, 355

masculine ordinal indicator, 244, 256, 676

matching (with selectors), 407–412

elements

by attributes, 409

child/descendant/adjacent sibling,

410–412

by class, 408

by identifier, 409

by type, 407

universal selector and, 407–408

math module (CSS3), 573

mathematical special characters, 241–243,

674–675

Max Design site, 471

max-height, 515, 694

maximum/minimum sizes, for elements, 515

max-width, 515, 694

mean line (font characteristic), 438

media queries module (CSS3), 573

media types (CSS), 553–570

@media rule, 554, 555, 569

Menu (system color keyword), 584

menu (user interface font keyword), 587

menu buttons, with rollovers, 549–552

menus, tabbed, 603–605

MenuText, 584

message-box (user interface font keyword),

587

META tag, 263

<meta> tags, 41–43, 643–644

metrics (property values), 423–430

micro sign, 243, 676

middle (vertical-align property value), 448

middle dot, 244, 256, 676

millimeters (CSS property values measure),

425

MIME type, 45, 98, 216, 217, 221, 222, 401

min-height, 515, 694–695

minimum/maximum sizes, for elements, 515

minus sign, 242, 674

min-width, 515, 694–695

miscellaneous special characters, 676–677

mobile HTML, 349–357

development tools, 356–357

history, 350–352

tips, 349

Mobile Profile standard (XHTML), 351

‘‘Mobile Web Best Practices’’ document, 353

modifier letter circumflex accent, 244, 677

Modularization, XHTML, 352

modules, XHTML Basic, 352–353

730

Index

monospace (typewriter) fonts, 58, 61, 66, 439,

455, 649, 662. See also teletype tag

MOTODEV, the Motorola Developer Network,

357

mouse

event triggers and mouse navigation,

265–269

scrollbar control (exercise), 387–393

move value (cursor property), 582

-moz prefix, 573

-moz-border-<side>-colors property, 574

MSHTML component, 557

mu (Greek letter), 672, 673

multimedia, 213–230. See also Adobe Flash

defined, 213

document creation, 564–570

embedding, 219–228

file creation, 229

HTML5 and, 298–300

multiple attribute, 169

multiple color borders, 576–577

multiplication sign, 241, 257, 674

N
nabla, 241, 674

name attribute

anchor tags and, 96, 619

(un)check all check box and, 383

form elements and, 284

<form> tag, 163, 164

frame and, 148, 151

object element and, 221

radio button and, 165

namespaces, XML, 336

n-ary product = product sign, 241, 674

n-ary summation, 241, 674

navigational menus and blocks (table

formatting), 139–141

ne-resize (cursor property), 582

nested CDATA tags, 14

nested comments, 13

nested framesets, 154–155

nested lists, 83–84

nested <script> tags, 263

nested tables, 103, 130

NetObjects Fusion, 312–314

new windows, opening, 93

newChild, 277

newspaper columns, 377–379

nextSibling, 276, 280

nodeName, 276

nodeType, 276

nodeValue, 277

nonbreaking space, 113, 233, 255, 373, 667

none value, 111, 293, 475

nongraphical browsers, text for, 204–205

non-parsed data (XML), 334–335

noresize attribute, 150

<noscript>, 644

not a subset of, 242, 675

not an element of (mathematical symbol entity),

241, 674

not equal to, 242, 675

not sign, 243, 256, 676

Notepad (Windows), 309–310, 346

nowrap attribute, 114, 305, 454, 455, 691

n-resize, 582

nu (Greek letter), 672, 673

null set, 241, 674

numbered lists. See ordered lists

nw-resize, 582

731

Index

O
<object> tag

attributes, 221

<embed> tag and, 222–223

embedding multimedia and, 219–228

reference for, 645–646

. See ordered lists

omega (Greek letter), 673, 674

omicron (Greek letter), 672, 673

onAbort, 180, 282, 287

onblur, 177, 180, 265, 287, 664

onchange, 39, 177, 180, 265, 287, 291, 385,

664

onclick, 39, 172, 174, 177, 179, 180–182,

265, 266, 267, 268, 282, 285, 286,

291, 383, 540, 664

ondblclick, 180, 265, 664

one-half (fraction), 244, 256, 676

one-quarter (fraction), 244, 256, 676

onError, 180, 282, 287

onfocus, 180, 265, 287, 664

onkeydown, 180, 265, 664

onkeypress, 180, 265, 664

onkeyup, 180, 265, 284, 664

online (screen media) document, 565–568

onLoad, 180, 282, 287, 372, 391, 392

onload, 19, 39, 265, 282, 625, 664

onmousedown, 180, 265, 664

onmousemove, 180, 265, 664

onmouseout, 180, 265, 266, 267, 287, 295,

391, 393, 549, 664

onmouseover, 180, 265, 266, 267, 282, 287,

291, 295, 391, 549, 664

onmouseup, 180, 265, 664

onreset, 180, 265, 282, 664

onResize, 180

onselect, 180, 265, 287, 664

onsubmit, 180, 265, 282, 287, 385, 664

onunload, 19, 39, 180, 265, 287, 625, 664

open(), 93, 281–283

Open Mobile Alliance, 351

opening new windows (debate), 93

OpenType standard, 443

Opera, 4, 368, 560, 561, 563

<optgroup>, 167, 168, 646–647

option groups, 168

<option> tag, 167–168, 647

attributes, 167

reference for, 647

ordered (numbered) lists (), 24, 25, 26,

72–77, 471–472, 646

default, 72–73

start value of, 76–77

organizational elements (of HTML documents),

32–35. See also forms; tables

orphans, 562–564, 703

orthogonal to, 242, 675

outline properties

outline, 192, 489–490, 700–701

outline-color, 192, 489–490, 700

outline-style, 489–490, 700

outline-width, 489–490, 700

outlines (dynamic outlines), 489–490

overflow property, 501, 515–517, 694

overline, 243, 676

ownerDocument, 277

<oXygen/>, 347

P
<p>, </p>. See paragraph tags

padding

cell, 107–108

732

Index

element, 482–483

values, 482

padding properties, 461, 482

padding, 463, 482, 693

padding-bottom, 482, 693

padding-left, 482, 693

padding-right, 482, 693

padding-top, 482, 693

page box formatting model, 556–558. See also

box formatting model

page breaks, 560–562

page-break-after, 560–562, 703

page-break-before, 560–562, 703

page-break-inside, 560–562, 703

paged media module (CSS3), 573

@page rule, 557–560, 564, 569

Paint Shop Pro Photo X2, 318

palettes

8-bit, 194

extended named color palette, 189–191

16 colors palette, 185, 188

216 colors palette, 187, 188

Web-safe palette, 187–188

paragraph sign, 244, 256, 676

paragraph tags (<p>, </p>), 21–22, 49–51,

647–648

division tags and, 53

reference for, 647–648

table data tags and, 50

<param> tags, 220, 222, 228, 648–649

−parent value, 92, 153, 155

parentNode, 277

parents/children, 411

parsing applications, XML, 347

partial differential, 241, 674

passive mode (PASV), 322

password input boxes, 165

PASV (passive mode), 322

PCDATA, 342

per mille sign, 245, 677

percentage (vertical-align property value), 448

percentage color values (RGB decimal format),

10–11, 186, 486

percentage metric (CSS property values),

426–428

percentage size (font size value metric), 441

Perl, 182, 183, 262, 347, 362, 628

perpendicular, 242, 675

phi (Greek letter), 673

Photoshop (Adobe), 11, 196, 197, 198, 318

PHP, 169, 182, 183, 201, 262, 310, 353

PHP Extension and Application Repository,

347

pi (Greek letter), 672, 673, 674

picas (CSS property values measure), 425

pictures. See images

pilcrow sign, 244, 676

pitch, 429

pixels, 426

plug-ins (animation, video formats), 216–219.

See also Flash

plus-minus sign, 243, 256, 676

PNG (Portable Network Graphics), 195–196

pointer value (cursor property), 582

points (CSS property values measure), 425

polygonal regions, 209, 210, 211

Portable Network Graphics. See PNG

positioning

absolute positioning model, 506–507

background images, 501

captions, 468–470

elements (CSS), 503–523

733

Index

positioning (continued)

fixed positioning model, 507–508

markers, 475–476

relative positioning model, 504–505

static positioning model, 503–504

positioning module (CSS3), 572

positioning properties (CSS 2.1), 508–511,

681, 695–698

bottom, 508, 697

left, 508, 697

position, 696–697

right, 508, 697

top, 508, 697

POST (HTTP POST), 163, 173, 290, 367,

385

pound, English, 235, 255, 668

pragma no-cache meta tag, 42, 44

<pre>, </pre>. See preformatted tags

precedence rules

CSS, 403–404

styles, 435

preformatted tags (<pre>, </pre>), 26–27,

58–59, 649

preformatted text, 26–27

preloading images, 371–373

previousSibling, 277, 280

print (CSS media type), 554, 556

printing

double-sided, 564

setup, for documents, 556–564

printing properties (CSS 2.1), 682, 702–704

product sign = n-ary product, 674

profiles, 45–46

progress value (cursor property), 582

progressive JPEGs, 197–198

projection (CSS media type), 554

property values (CSS)

keywords, 424

metrics, 423–430

real-world measures, 425

relational measures, 426–428

rules, 421–423

screen measures, 426

proportional to (mathematical symbol entity),

242, 674

protecting e-mail addresses, 379–381

pseudo constructs (for CSS3), 709

pseudo-class selectors, 414

pseudo-classes, 709–710

anchor, 551–552

:active, 413, 551, 600

:hover, 413, 551

:link, 413, 551

:visited, 413, 551

for anchor tags, 413–414

:first-child, 414

:focus, 413

:lang, 414, 417, 709

:left, 564

reference for, 710

:right, 564

using, 413–414

pseudo-elements, 415–418, 527–531,

709–710

:after, 417–418, 419, 527, 530–531, 709

:before, 417–418, 419, 527, 530–531, 709

:first-letter, 416–417, 527, 528–530

:first-line, 415–416, 527, 528

generated content and, 525–537

reference for, 710

specificity and, 436

PSGML, 347

734

Index

publishing

HTML documents and, 321–327

HTML5 publishing features and, 297

pull quotes, 600–602

Python, 182, 262, 347, 353, 362

Q
<q>, 624, 649–650

question mark, inverted/turned, 244, 256, 676

QuickTime, 218

quotation marks, 235–236, 531–532

auto-generation of, 531–532

double low-9, 244, 677

ISO-8559-1 HTML character, 255

left/opening double-quote, 236, 669

left/opening single-quote, 236, 669

left-pointing double angle (left pointing

guillemet), 243, 256, 676

real, 235–236

right/closing double-quote, 236, 669

right/closing single-quote, 236, 669

right-pointing double angle (right pointing

guillemet), 244, 256, 676

single left-pointing angle, 245, 677

single low-9, 244, 677

single right-pointing angle, 245, 677

quote mark special characters, 669

quoted text, 24

quotes, pull, 600–602

quotes property, 531–532, 686

R
radians (aural metric), 429

radical sign = square root, 242, 674

radio buttons, 165–166

Raggert, Dave, 362

raster-based editors, 318

readonly attribute, 175, 176, 617

real quotation marks, 235–236. See also

quotation marks

RealOne, 218

real-world examples (table formatting),

131–134

real-world measures (CSS property values), 425

rectangle polygons, 209, 210

redirecting documents, 44

refresh meta tag, 44

refreshing documents, 43–44

registered trademark symbol, 234–235, 256,

668

rel (link destination detail), 98

relational measures (CSS property values),

426–428

relative links, 90–92

relative positioning, 504–505

relative size keywords (font size value metric),

441

removeChild(), 277

repeating images, 498–501

replaceChild(), 278

replaced content module (CSS3), 573

Reset button, 174

resizing. See sizing

rev (link destination detail), 98

RFC1766, 15

rgb(), 428–429

RGB decimal format, 10–11, 186, 486

rho (Greek letter), 672, 673

rhs (frame attribute value), 110

:right, 564

right (CSS property), 508, 697

735

Index

right (page-break-before/after property value),

561

right arrow, 236, 669

right ceiling, 242, 675

right double arrow, 669

right floor, 243, 675

right justification, 447

right/closing double-quote, 236, 669

right/closing single-quote, 236, 669

right-pointing angle bracket, 243, 675

right-pointing double angle quotation mark

(right pointing guillemet), 244, 256,

676

right-to-left mark, 244, 677

rightwards double arrow, 236

rollovers

creating, 291–292

menu buttons with, 549–552

rounded corners, 575–577, 605–608

row groups (header/body/footer), 117–119

rows. See table rows

rows (rules attribute value), 111

rowspan (table cell attribute), 114, 120,

122–123, 139–140, 379

RSS syndication format, 330, 332, 345

Ruby module (CSS3), 572

rules

@import rule, 434, 556

@media rule, 554, 555, 569

@page rule, 557–560, 564, 569

CSS precedence rules, 403–404

horizontal rule tag, 56–57, 636

!important rule, 403, 404, 434, 435

precedence rules

CSS, 403–404

styles, 435

property values (CSS), 421–423

table, 110–111

table sections and, 118–119

for tag attributes, 9

text structuring and, 56–57

RWS Group, 249

S
Safari, 4, 368, 573

<samp>, 650

Sans-serif, 438, 439, 440

Scalable Vector Graphics (SVG), 573

schemas (XML), 343–345

scope (table cell attribute), 114

screen (CSS media type), 554

screen measures (CSS property values), 426

screen media (online) document, 565–568

script services, 183, 355

script sessions, 45

<script> tags, 38, 39, 45, 262–263, 264, 270,

650–651

script-hiding tags, 269–270

scripts (client-side scripting), 38–39, 261–270

adding to document, 263–264

external, calling, 264

hiding, from older browsers, 269–270

JavaScript and, 181, 261

server-side scripting v., 261–262

setting default, 262–263

triggering, with events, 264–269

scroll (overflow property value), 516

Scrollbar (system color keyword), 584

scrollbar control (exercise), 387–393

document with scrollbar control (listing

24–2), 390–391

JavaScript functions in, 392–393

736

Index

JavaScript to control the scroll bar (listing

24–1), 388–390

scrolling attribute, 148, 149, 150, 157

scrolling images, 498–501

section elements, HTML5, 297–298

section sign, 243, 255, 676

section/chapter auto-numbering system,

533–536

<select> tag, 167, 651–652

selected attribute (<option> tag), 167

selectors (CSS selectors), 407–412, 705–708,

709. See also pseudo-classes;

pseudo-elements

adjacent sibling, 280, 407, 410–412, 591,

707

attribute, 707, 708

child, 410–412, 706–707

class, 415, 561, 705, 707

CSS3, 574–575

descendant, 407, 410–412, 705, 706, 707

document hierarchy and, 411–412

element, 407, 705–706

ID, 707–708

matching with, 407–412

pseudo-class, 414

reference for, 705–708

universal, 407–480

selectors module (CSS3), 572

self object, 285–286

−self value, 92, 153

self-describing XML documents, 330

send only, HTML and, 159

se-resize (cursor property), 582

Serif, 438, 439, 440

server-side image maps, 208

server-side scripting, 261–262. See also scripts

setAttribute(), 278

setscroll(), 393

SGML (Standard Generalized Markup

Language), 329, 330. See also XML

shape attribute, 211

shortcuts

background property, 502

border property, 486–487

keyboard shortcuts

for forms, 174–175

for links, 94–95

shorthand expressions, 418–420

showing/hiding text, 545–547

siblings, 411

sigma (Greek letter), 672, 673

similar to (mathematical symbol entity), 242,

675

simulating newspaper columns, 377–379

single left-pointing angle quotation mark, 245,

677

single low-9 quotation mark, 244, 677

single right-pointing angle quotation mark, 245,

677

16 colors palette, 185, 188

size property, 559

sizing

buttons, 597–600

cursors, 582–583

fonts, 440–441

images, 205–206

slash (/), 7

sliding door approach (sizing buttons), 597,

598

<small>, 29, 30, 652–653

small a (special characters), 257–258

small c, cedilla, 258

737

Index

small e (special characters), 258

small eth, Icelandic, 258

small i (special characters), 258

small n, tilde, 258

small o (special characters), 258

<small> tag, 30, 235, 652

small thorn, Icelandic, 258

small tilde, 244, 677

small u (special characters), 258

small y, acute accent, 258

small y, diaeresis or umlaut mark, 258

small-caption (user interface font keyword), 587

smart text editors, 310–311

Smileycat Web Design Blog, 607

SML (Synchronized Multimedia Integration

Language), 573

soft hyphen, 243, 256, 676

sorting order, cascade, 435

sound, added to Web pages, 228–229

spacing, cell, 107–108

spacing acute, 243, 676

spacing cedilla, 244, 676

spacing diaeresis, 243, 676

spacing macron, 243, 676

 tags, 31, 68–69, 653

<div> tag v., 68

 tag and, 62

inline elements grouped with, 68–69

spanning columns/rows, 120–125

special characters (entities/character entities),

31–32, 231–245

accented, 670–672

arrow, 236, 669

capital A, 256

capital E, 257

capital I, 257

capital O, 257

capital U, 257

character encodings, 231–232

code reference for, 32

currency, 235, 668

as entities, 232–233

essential, 667

Greek, 239–241, 672–674

ISO-8559-1, 255–258

Latin, 237–239, 670–672

list of, 667–677

mathematical, 241–243, 674–675

miscellaneous, 676–677

small a, 257–258

small e, 258

small i, 258

small o, 258

small u, 258

specifying, 32

W3C site and, 231

specificity, 435–436

spiders (electronic robots), 87

spinning CD animation, 214, 215, 216

square brackets [], 14, 169, 409. See also angle

brackets

square root = radical sign, 242, 674

squared, 243, 676

src attribute, 39, 148, 157, 200, 201, 264, 267,

549, 651

s-resize, 582

stacking elements, 517–522

Staflin, Lennart, 347

Standard Generalized Markup Language

(SGML), 329, 330

standards/guidelines, W3C and, 7

static positioning, 503–504

738

Index

status-bar (user interface font keyword), 587

stopscroll(), 393

straight quotes, 235. See also quotation marks

stretching title bars, 374–376

strikethrough tag, 30

 (strong text), 29, 31, 653–654

Studio Hyperset, 355

style attribute, 13, 20, 45, 69, 295, 353, 541,

665

style blocks, 45

style definitions, 20–21, 400–402, 405–420

format, 405–406

property values

metrics, 423–430

rules, 421–423

selectors and. See selectors

style inheritance, 412

style sheets

aural

Alliance for Technology Access website

and, 679

angles and, 423, 429–430

frequencies and, 423, 429–430

time values and, 423, 429–430

defined, 398

XML and, 337

<style> tags, 401, 654–655

style.fontSize, 286, 540, 541

styles

anchor, 413–414

author, 433–434

caption formatting and, 117

cascading, 402–404

creation, testing sytntax and, 589–591

defining, 400–402

HTML and, 398–400

precedence, 435

purpose of, 397–398

user, 434

user agent, 434

user interface, 581–587

<sub> (subscripts), 67, 655

sub (vertical-align property value), 448

Submit button, 172, 174

subscripts. See <sub>

subset of, 242, 675

subset of or equal to, 242, 675

<sup> (superscripts), 67, 234, 655

super (vertical-align property value), 448

superscript one (superscript digit one), 244,

256, 676

superscript three (superscript digit three), 243,

256, 676

superscript two (superscript digit two), 243,

256, 676

superscripts. See <sup>

superset of, 242, 675

superset of or equal to, 242, 675

SuperSizeMe(), 540

SVG (Scalable Vector Graphics), 573

sw-resize, 582

Synchronized Multimedia Integration Language

(SMIL), 573

SyncRO Soft Ltd., 347

syntax checking, 589–591

syntax/grammar module (CSS3), 572

system color keywords, 583–584

T
tab order

for forms, 174–175

for links, 95

739

Index

tabbed menus, 603–605

tabindex attribute, 95, 174–175

table attributes, CSS properties for, 460–467

table border spacing, 462–464

table captions. See captions

table cells (cells), 112–114

attributes, 114

controlling text breaks in, 373

empty, 113, 465- 467, 682, 702

padding, 107–108

spacing, 107–108

spanning, 122

table cell/table data. See <td>

table columns

grouping, 125–126

multiple format, 141–142

/rows, spanning, 120–125

table header tag (<th>), 105, 659–660

table module (CSS3), 573

table properties (CSS 2.1), 682, 701–702

table row ending tag (</tr>), 111

table row tag attributes, 112

table row tags. See <tr>

table rows, 111–112

/columns, spanning, 120–125

groups (header/body/footer), 117–119

table sections, 117–119

<table> tags, 32, 656–657

border attribute, 9, 108, 110, 379, 409, 462

purpose of, 127

reference for, 656–657

width attribute, 104–105

table-layout property, 461, 467, 701

tables (HTML tables), 32–34, 101–142

alignment, 103–107

background colors, 119–120

borders, 108–110

captions. See captions

cell padding/cell spacing, 107–108

cells. See table cells

corporate website and, 131–132

formatting with, 127–142

multiple columns, 141–142

navigational menus/blocks, 139–141

odd graphics/text combinations, 134–139

real-world examples, 131–134

rudimentary, 127–131

headers. See headers

layout, 127–142

CSS layout v., 127

forms and, 127–131

newspaper columns, 377–379

nested, 103, 130

parts of, 101–103

rows. See table rows

rules, 110–111

width, 103–107

tag attributes

common, 12–13

format for, 9–11

rules for, 9

values for, 10–11

tag auto-completion tools, 17

tags (HTML tags). See also specific tags

classes and, 12–13

identifiers for, 12–13

IDs and, 12

target attribute, 92–93, 152–153, 164

tau (Greek letter), 673

<tbody>, 657

<td> (table cell/table data tags), 32, 50, 103,

105, 657–658

740

Index

TechNote site (Adobe), 220

teletype tag (<tt>), 29, 30, 66, 554, 662

testing. See also validation

CSS, 589–591

HTML, 368–369

text

alignment, 445–450

auto-completion, 590

autogenerated, 460

baseline alignment, 112

decorations, 458–459

flowing, 611–615

formatting (CSS), 445–470

fully justified, 447

hiding/showing, CSS and, 545–547

indenting, 450–451

justification, 447

markup, 5

structuring, 49–59

white space

float property and, 451–454, 511–514,

697

table formatting and, 113, 138

text breaks, in table cells, 373

text control methods, 61–65

text direction, 15–16, 681, 691–692

text input boxes, 164–165

text module (CSS3), 572

text properties. See font/text properties

text value (cursor property), 582

text-align property, 445–448, 461, 686–687

<textarea> tags, 169–170, 658–659

text-bottom (vertical-align property value), 448

text-decoration property, 64, 458–459, 687

text/graphics, in nonstandard format (table

formatting), 134–139

text-indent, 450–451, 534, 595, 597, 686

text-oriented editors, 309–312

TextPad, 310–311

text-shadow property, 192, 458–459

text-top (vertical-align property value), 448

text-transform property, 64, 457–458,

687–688

textual FTP clients. See FTP clients

<tfoot>, 117, 659

<th>. See table header tag

<thead> tags, 117, 660–661. See also headers

there exists (mathematical symbol entity), 241,

674

therefore (mathematical symbol entity), 242,

675

theta (Greek letter), 672, 673, 674

thin space, 244, 677

ThreeDDarkShadow, 584

ThreeDFace, 584

ThreeDHighlight, 584

ThreeDLightShadow, 584

ThreeDShadow, 584

three-quarters (fraction), 244, 256, 676

tidy code, 359–365

TIF files, 196

tilde operator, 242, 675

tips/tricks

for CSS, 595–615

for HTML, 371–393

for mobile HTML, 349

for XHTML, 617

title attribute, 93–94, 665

title bars, expandable, 374–376

<title> tag, 19, 20, 661

tooltips, 37, 93, 94, 211, 584, 620

top (CSS property), 508, 697

741

Index

top (vertical-align property value), 448

−top value, 92, 153, 155

TopStyle Lite, 312

<tr> (table row tags), 32, 111–112, 661–662

trademark symbol, 234–235, 258, 668

translating Web sites, 249

transparency, 194, 198–199

traversing document’s nodes, 278–280

tricks. See tips/tricks

triggering scripts, with events, 264–269

TrueDoc standard, 443

<tt>. See teletype tag

tty (CSS media type), 554

Tucows, 216

turned question mark, 244, 676

tv (CSS media type), 554

216 colors palette, 187, 188

type (link destination detail), 98

typewriter (monospace) fonts, 58, 61, 66, 455,

649, 662. See also teletype tag

U
UIMode settings (Windows Media Player), 226

. See unordered lists

umlaut, 255, 258. See also diaeresis

(Un)Check All check box, 290–291, 382, 383

underline tag, 30

Unicode, 249–260

alphabets in, 250–254

ISO-8859-1, 42, 254–258, 259, 260

text direction and, 16

unicode-bidi, 291

uniform resource indicators. See URIs

uniform resource locators. See URLs

union, 242, 675

United States map, 208, 212

units/values module (CSS3), 572

universal selector, 407–408

unordered (bulleted) lists (), 24, 77–81,

471–472

untidy code, 359–360

up arrow, 236, 669

up double arrow, 669

up tack, 242, 675

upper-alpha, 74, 75, 473, 684

upper-latin, 75, 473, 684

upper-roman, 75, 473, 684

upsilon (Greek letter), 673, 674

upwards double arrow, 236

<uri> (cursor property value), 582

URIs (uniform resource indicators), 14–15

defined, 14

format of, 15

URLs v., 14

url(), 423, 429, 527, 682, 685, 704

URLs (uniform resource locators)

components of, 90

URIs v., 14

user agent styles, 434

user experience, importance of, 272

user interface colors, 583–586

user interface fonts, 587

user interface module (CSS3), 573

user interface styles, 581–587

user styles, 434

UTF-8 encoding, 250, 254, 259, 260

V
valid document, 337

validation

CSS, 591–592

form input, 384–387

HTML, 365–369

742

Index

validation output, 367–368

validation tools, 366

valign

table cell attribute, 114

table row tag attribute, 112

value assignment/cascade/inheritance module

(CSS3), 572

value attribute (<option> tag), 167

values/units module (CSS3), 572

<var>, 663

varies with (mathematical symbol entity), 242,

675

VBScript, 45, 261

vector product = circled times, 242, 675

vector-based editors, 318

vee (logical or), 242, 675

vertical collapsible menus, 292–295

vertical module/box model module (CSS3), 572

vertical text alignment, 448–450

vertical-align property, 448–450, 451, 461, 695

VGA (Video Graphics Array), 185

vi (text editor), 309–310

Video Graphics Array (VGA), 185

video/animation formats, 216–219

vim (text editor), 310

visibility property, 522–523, 696

visible (overflow property value), 516

:visited, 413, 551

visited (link status mode), 96–97

void (frame attribute value), 110

vsides (frame attribute value), 110

vspacer, 612, 614

vulgar fraction one-half, 244, 256, 676

vulgar fraction one-quarter, 244, 256, 676

vulgar fraction three-quarters, 244, 256, 676

W
W3C (World Wide Web Consortium)

cascade sorting order, 435

CSS validation tool, 367

DOM. See DOM

guidelines/standards and, 7

HTML validation tool, 366

HTML5 and, 297

HTTP 1.1 headers, 43

Jigsaw tool, 591–592, 593

‘‘Mobile Web Best Practices’’ document,

353

pseudo constructs (for CSS3), 709

special characters and, 231

specificity specification and, 436

Web-safe palette of colors, 187–188

XML recommendations, 330

wait value (cursor property), 582

WAP (Wireless Access Protocol), 350

WAV file, 228

WDG (Web Design Group) validation tool,

366

Web browsers. See browsers

Web colors. See colors

Web Design Group (WDG) validation tool,

366

Web development tools, 309–320

mobile, 356–357

Web documents. See HTML documents

Web fonts module (CSS3), 573

Web pages/Web sites

file organization, 326–327

sound added to, 228–229

translating, 249

Web server file organization, 326–327

Web server names, www and, 90

743

Index

Webkit framework, 573

-webkit prefix, 573

‘‘Web-like content,’’ 350

Web-safe palette (of colors), 187–188

wedge (logical and), 242, 675

white space

float property and, 451–454, 511–514,

697

table formatting and, 113, 138

white-space property, 454–455, 691

widows, 562–564, 703–704

width (table width), 103–107

width attribute

image tag, 205

inline frame tag, 157

table tag, 104–105

width property, 57, 461, 470, 511, 514–515,

694
Wiley

JavaScript Bible, 295, 387

XML Programming Bible, 329

XML Weekend Crash Course, 329

Window (system color keyword), 584

window object, 281–283

WindowFrame, 584

window.getComputedStyle, 541, 542,

543

window.open(), 93, 281–283

Windows Explorer, 143, 144

Windows Media Developer Center site, 224

Windows Media Player, 218–219

embedding, 223–226

object parameters, 224, 225

UIMode settings, 226

Windows Notepad, 309–310, 346

WindowText, 584

Winfiles.com, 216

Wireless Access Protocol (WAP), 350

Wireless Markup Language (WML), 350, 351,

355

WML (Wireless Markup Language), 350, 351,

355

word-spacing property, 455–457, 691

World Wide Web Consortium. See W3C

wrap attribute, 170

w-resize (cursor property), 582

WROX

Beginning XML, Third Edition, 329

XSLT 2.0 Programmer’s Reference, Third

Edition, 329

WS-FTP, 326

www, Web server names and, 90

WYSIWYG HTML editors, 312–317

X
x-height (font characteristic), 438

XHTML 1.1

HTML5 and, 301

Mobile Profile standard, 351

syntax, 331

tips, 617

XML and, 331

XHTML Basic 1.1, 351, 352–356

elements, 352–353

modules, 351–352

special considerations, 353–356

XHTML Modularization, 352

xi (Greek letter), 672, 673

XMetal, 347

744

Index

XML (Extensible Markup Language),

329–347

attributes, 333–334

basics, 329–331

books on, 329

declaration, 331–332

DTDs and, 332, 337–342

editing, 346–347

elements, 332–333, 338–340

entities, 335, 342

namespaces, 336

non-parsed data, 334–335

parsing applications, 347

schemas, 343–345

stylesheets and, 337

syntax, 331–337

using, 345–347

W3C recommendations, 330

XHTML and, 331

XML Programming Bible (Wiley), 329

XML Weekend Crash Course (Wiley), 329

XMLSpy, 347

XSLT (Extensible Stylesheet Language

Transformations), 346

XSLT 2.0 Programmer’s Reference, Third Edition

(WROX), 329

Y
Yahoo’s Babel Fish, 249

yen, 235, 255, 668

YouTube

embedding, 226–228

Flash plug-in and, 227

platform, 218

Z
zero width joiner, 244, 677

zero width non-joiner, 244, 677

zero-width space, 373

zeta (Greek letter), 672, 673

z-index property, 517–522, 697–698

zooming images, 548–549

745

Get the most out of the latest software and leading-edge technologies
with a Wiley Bible—your one-stop reference.

The books you
read to succeed.

Available wherever books are sold.

978-0-470-45264-6

978-0-470-43640-0

978-0-470-50909-8

978-0-470-47191-3

Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc.
All other trademarks are the property of their respective owners.

48760_Bible_em.indd 148760_Bible_em.indd 1 10/22/09 6:26:23 PM10/22/09 6:26:23 PM

Schafer

The book you need to succeed!

Master the essential building blocks
of the Web
The first step to any Web document is to build a strong
foundation. This comprehensive book focuses on the
essential building blocks of the Web: HyperText Markup
Language (HTML), extensible HTML (XHTML),
and Cascading Style Sheets (CSS). You’ll learn basic
scripting and coding standards; how to use tags, tables,
forms, and links; the best ways to test and validate
pages; and many more techniques that help you take
full advantage of these essential tools.

Companion
Web Site

• Explore the basics of HTML such as tags, attributes, and how to
structure content to create specialized document formatting

• Learn how multimedia and scripting can be used to make your
content dynamic

• Author, validate, and troubleshoot your coding and documents

• Enable content for multiple devices—from the standard PC browser
to various mobile devices

• Understand values, lists, colors, fonts, and other CSS metrics and
formatting basics

• Get up to speed on advanced document formatting

Companion
Web Site
Code samples and examples from
the book, as well as extra material,
can be found at www.wiley.com/go/
htmlbible5e.

Steven M. Schafer
has broad experience in technology
and is a veteran of publishing. He’s
been in and around technology as a
programmer, an editor, a product
specialist, a technical manager, and
a Web developer. Steve employs
both open-source and proprietary
technologies and has worked with
the Internet since the mid-1990s.
He can be reached by e-mail at
sschafer@synergy-tech.com.

Master HTML 4.01,
CSS 2.1, and XHTML 1.1

Construct static and
dynamic Web pages

Build for a mobile and
social networking world

H
T

M
L

, X
H

T
M

L
, an

d
 C

S
S

Shelving Category:
COMPUTERS / Programming
Languages / HTML, SGML

Reader Level:
Beginning to Advanced

$39.99 USA
$47.99 Canada

www.wiley.com/go/ htmlbible5e

Steven M. Schafer

Fifth Edition

Fifth Edition

HTML,
XHTML, and
CSS

Companion Web Site

	HTML, XHTML, and CSS Bible 5th Edition
	About the Author
	Credits
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	A Brief History of the Internet and the World Wide Web
	What This Book Covers
	User Agent (Browser) Coverage
	Web 2.0
	Terminology
	Who Should Read This Book?
	This Is Not a Web Design Book
	What Is Contained in This Book?
	How to Use This Book
	Conventions and Features
	Companion Website

	Part I: Creating Content with HTML
	Chapter 1: What Is a Markup Language?
	What Are We Doing Here?
	Understanding Hypertext
	Understanding Markup Instructions
	Understanding Markup Language
	Summary

	Chapter 2: HTML Values and Units
	Basic Tag Attribute Format
	Common Attributes
	Text and Comments
	Uniform Resource Indicators
	Language and International Options
	Summary

	Chapter 3: What Goes into a Web Document?
	Specifying Document Type
	Overall Document Structure: HTML, Head, and Body
	Style Definitions
	Block Elements: Markup for Paragraphs and Other Blocks of Content
	Inline Elements: Markup for Characters
	Special Characters (Entities)
	Organizational Elements
	Linking to Other Pages
	Images
	Comments
	Scripts
	Putting It All Together
	Summary

	Chapter 4: The HEAD Elements
	Specifying the Document Title
	Providing Information to Search Engines
	Setting the Default Path
	Script Sections
	Style Sections
	Specifying Profiles
	Background Color and Background Images
	Summary

	Chapter 5: Text Structuring Essentials
	Formatting Paragraphs
	Line Breaks
	Divisions
	Rules
	Block Quotes
	Preformatted Text
	Summary

	Chapter 6: Character Formatting Essentials
	Methods of Text Control
	Bold and Italic Text
	Use of Emphasis Instead of Italics
	Monospace (Typewriter) Fonts
	Superscripts and Subscripts
	Abbreviations
	Marking Editorial Insertions and Deletions
	Grouping Inline Elements with the Span Tag
	Summary

	Chapter 7: Lists
	Understanding Lists
	Ordered (Numbered) Lists
	Unordered (Bulleted) Lists
	Definition Lists
	Nested Lists
	Summary

	Chapter 8: Links
	What’s in a Link?
	Linking to a Web Page
	Absolute versus Relative Links
	Link Targets
	Link Titles
	Keyboard Shortcuts and Tab Order
	Creating an Anchor
	Choosing Link Colors
	Link Destination Details
	The Link Tag
	Summary

	Chapter 9: Tables
	Parts of an HTML Table
	Table Width and Alignment
	Cell Spacing and Padding
	Borders and Rules
	Rows
	Cells
	Table Captions
	Row Groups — Header, Body, and Footer
	Background Colors
	Spanning Columns and Rows
	Grouping Columns
	Formatting with Tables
	Summary

	Chapter 10: Frames
	Frames Overview
	Framesets and Frame Documents
	Targeting Links to Frames
	Nested Framesets
	Inline Frames
	Summary

	Chapter 11: Forms
	Understanding Forms
	Inserting a Form
	Field Labels
	Text Input Boxes
	Password Input Boxes
	Radio Buttons
	Check Boxes
	List Boxes
	Large Text Input
	Hidden Fields
	Buttons
	Images
	File Fields
	Submit and Reset Buttons
	Tab Order and Keyboard Shortcuts
	Preventing Changes
	Fieldsets and Legends
	Using Events with Forms
	Form Scripts and Script Services
	Summary

	Chapter 12: Colors and Images
	Web Color Basics
	Other Means to Specify Colors
	The Evolution of Color on the Web
	Using Proper Means to Specify Colors
	Image Formats for the Web
	Creating Graphics
	Inserting an Image
	Image Alignment
	Specifying Text to Display for Nongraphical Browsers
	Sizing an Image
	Image Borders
	Image Maps
	Summary

	Chapter 13: Multimedia
	Animated Images
	Animation and Video Formats, Plug-ins, and Players
	Embedding Media via the Object Tag
	Embedding a Windows Media Player Using <object>
	Embedding YouTube Videos
	Adding Sound to Web Pages
	Creating Multimedia Files
	A Final Word About Multimedia
	Summary

	Chapter 14: Special Characters
	Understanding Character Encodings
	Special Characters
	En and Em Spaces and Dashes
	Copyright and Trademark Symbols
	Currency Symbols
	‘‘Real’’ Quotation Marks
	Arrows
	Accented Characters
	Greek and Mathematical Characters
	Other Useful Entities
	Summary

	Chapter 15: Internationalization and Localization
	Internationalization and Localization
	Translating Your Web Site
	Understanding Unicode
	Summary

	Chapter 16: Scripts
	Client-Side versus Server-Side Scripting
	Setting the Default Scripting Language
	Including a Script
	Calling an External Script
	Triggering Scripts with Events
	Hiding Scripts from Older Browsers
	Summary

	Chapter 17: Dynamic HTML
	The Need for DHTML
	How DHTML Works
	The Document Object Model
	The JavaScript DOM
	Using Event Handlers
	Accessing an Element by Its ID
	Cross-Browser Compatibility Issues
	DHTML Examples
	Form Automation: Check boxes
	Summary

	Chapter 18: The Future of HTML: HTML5
	More Publishing and Layout Features
	Accessible Multimedia
	Changes: Elements and Attributes
	Summary

	Part II: HTML Tools and Variants
	Chapter 19: Web Development Software
	Text-Oriented Editors
	WYSIWYG HTML Editors
	Other Tools
	Summary

	Chapter 20: Publishing Your Site
	Introducing FTP
	FTP Clients
	Notable FTP Clients
	Principles of Web Server File Organization
	Summary

	Chapter 21: An Introduction To XML
	XML Basics
	XML Syntax
	Working with Document Type Definitions
	Introducing XML Schemas
	Working with Schemas
	Using XML
	Summary

	Chapter 22: Creating Mobile Documents
	Understanding the Evolution of the Mobile Web
	XHTML Basic 1.1
	Mobile Web Development Tools
	Summary

	Chapter 23: Tidying and Validating Your Documents
	Tidying Your HTML Code
	Validating Your Code
	Additional Testing and Validation
	Summary

	Chapter 24: HTML Tips and Tricks
	Preloading Images
	Controlling Text Breaks in Table Cells
	Stretching Title Bars
	Simulating Newspaper Columns
	Including Image Size for Fast Display
	Protecting E-mail Addresses
	Automating Forms
	Modifying the User Agent Environment
	Summary

	Part III: Controlling Presentation with CSS
	Chapter 25: CSS Basics
	The Purpose of Styles
	Styles and HTML
	CSS Levels 1, 2, and 3
	Defining Styles
	Cascading Styles
	Summary

	Chapter 26: Style Definitions
	The Style Definition Format
	Understanding Selectors
	Understanding Style Inheritance
	Using Pseudo-Classes
	Pseudo-Elements
	Shorthand Expressions
	Summary

	Chapter 27: CSS Values and Units
	General Property Value Rules
	Property Value Metrics
	Summary

	Chapter 28: CSS Inheritance and Cascade
	Inheritance
	Cascade
	Specificity
	Summary

	Chapter 29: Font Properties
	Understanding Fonts
	Font Types
	Font Sizing
	Font Styling
	Line Spacing
	Embedding Fonts in a Document
	Summary

	Chapter 30: Text Formatting
	Aligning Text
	Indenting Text
	Controlling White Space Within Text
	Controlling Letter and Word Spacing
	Specifying Capitalization
	Using Text Decorations
	Autogenerated Text
	Using CSS Table Properties
	Controlling Table Attributes
	Table Layout
	Aligning and Positioning Captions
	Summary

	Chapter 31: CSS Lists
	An Overview of Lists
	CSS Lists — Any Element Will Do
	List Style Type
	Positioning of Markers
	Using Images as List Markers
	Summary

	Chapter 32: Padding, Margins, and Borders
	The CSS Box Formatting Model
	Element Padding
	Element Borders
	Element Margins
	Dynamic Outlines
	Summary

	Chapter 33: Colors and Backgrounds
	Element Colors
	Background Images
	Summary

	Chapter 34: CSS Layouts
	Understanding CSS Positioning
	Specifying the Element Position
	Floating Elements to the Left or Right
	Defining an Element’s Width and Height
	Stacking Elements in Layers
	Controlling Element Visibility
	Summary

	Chapter 35: Pseudo-Elements and Generated Content
	The Content Property
	Pseudo-Elements
	Quotation Marks
	Numbering Elements Automatically
	Summary

	Chapter 36: Dynamic HTML with CSS
	Accessing CSS Properties with JavaScript
	Useful CSS Manipulation
	Summary

	Chapter 37: Media Styles and Defining Documents for Printing
	Understanding CSS Media Types
	Setting Up Documents for Printing
	Creating a Multimedia Document
	Summary

	Chapter 38: The Future of CSS: CSS3
	Just Better
	Modularity
	Using CSS3 Properties Today
	More Control over Selections
	Revisiting the Brass Ring of CSS: Rounded Corners
	Summary

	Part IV: Additional CSS Tools
	Chapter 39: User Interface Styles
	Changing the Cursor
	User Interface Colors
	User Interface Fonts
	Summary

	Chapter 40: Testing and Validating CSS
	Testing Syntax As You Create Styles
	A Word About Formatting
	Validating CSS
	Firefox Add-ons for CSS Editing
	Summary

	Chapter 41: CSS Tips and Tricks
	Hanging Indents
	Expanding Buttons
	Pull Quotes
	Tabbed Menus
	Summary

	Appendix A: XHTML Element Quick Reference
	Appendix B: HTML Special Characters Quick Reference
	Appandix D: CSS 2.1 Selectors Quick Reference
	Appendix E: Pseudo-Elements and Pseudo-Classes Quick Reference
	Index

